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Abstract

A new state-space structure for the realization of arbitrary filter transfer-functions is
presented. This structure should prove useful where integrators are the basic building
blocks such as in transconductance-C, MOSFET-C, or active-RC filters. The structure is
derived from a singly-terminated LC ladder and has the properties that it is always scaled
for optimum dynamic range and its integrator outputs are orthogonal. For this reason, the
resulting realizations are called “orthonormal ladder filters”. Since dynamic range scal-
ing is inherent to the proposed structure, it is felt that this design technique may be most
useful in programmable or adaptive filters. Finally, the sensitivity and dynamic range
properties of an orthonormal ladder filter are shown to be comparable in performance to
the equivalent properties obtained from a cascade of biquads.

1. Introduction

When realizing high order transfer-functions, a circuit simulation of an LC ladder

results in very good performance. The reason for this fact is the excellent passband sen-

sitivity properties of doubly-terminated LC ladder filters [l]. However, passband sensi-

tivity is not always the deciding factor in choosing a filter implementation. Other proper-

ties of a particular implementation may become important. For example, often a cascade
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of biquads is implemented because of its ease of design, the ability to realize any stable

transfer-function, or one of its many other features. This paper will introduce a new filter
1

structure which has a sensitivity and dynamic range performance comparable to a cas-

cade of biquads as well as other interesting and useful properties. We call the filters with

this new structure “orthonormal ladder filters”.

Perhaps one of the more interesting properties of orthonormal ladder filters is the

fact that the resulting circuits are inherently scaled for optimum dynamic range. More-

over, an Lz norm is used in dynamic range scaling as opposed to an L_ norm. Simply

stated, Lz scaling implies that the output of each integrator will have the same RMS

value when white noise is applied at the filter input. It is felt that this type of scaling cov-

ers a more general class of filters than L_ scaling where a swept sinusoid is applied at the

input. Note that while Lz scaling is relatively difficult to apply to a cascade of biquads,

the actual structure of orthonormal ladder filters ensures optimum dynamic range scaling

with an L2 norm.

Another property of orthonormal ladder filters is the ability to realize any stable

transfer-function. This is accomplished through the use of an output summing stage.

Output summing is often avoided in practice because of fears of poor stopband sensitivity

properties. However, through the use of two examples, it will be shown that an orthonor-

ma1 ladder filter (including, of course, the output summing stage) has a sensitivity perfor-

mance comparable to a good design of a cascade of biquads. Additionally, since for a

given transfer-function the orthonormal ladder realization is unique, the design procedure

is more easily automated than the process of finding an optimal biquad cascade design

where pole-zero pairing and cascade ordering are important. It will also be shown that
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the output summing

the integrators.

stage can be replaced by using feed-forward to each of the inputs of

Two other features of orthonormal ladder filters are: a close relationship to singly-

terminated LC ladders, and uncorrelated integrator outputs when the filter input is white

noise. The close relationship to singly-terminated ladders allows a simple synthesis pro-

cedure and a trivial stability check. Uncorrelated integrator outputs suggest the possibil-

ity of adaptive filtering with continuous-time signals.

Orthonormal filter structures are well known in the digital filter literature [2]. One

of the reasons for their use is that overflow oscillations are impossible in these digital

filters. However, their main disadvantage is that their structure is fairly dense. For-

tunately, the structure for orthonormal ladder filters is quite sparse.

The state-space formulation is used to find and analyze the structure of the proposed

orthonormal ladder filters. Section 2 defines the state-space description and the state

correlation matrix, as well as deriving a formula which relates the state correlation matrix

to the system matrices. Although this formula is well known in the control literature, it is

derived here to emphasize its physical interpretation. When the state correlation matrix

is the identity matrix, orthonormal systems are obtained. Orthonormal ladder synthesis is

presented in section 3 where it is shown that singly-terminated ladders can be used to

obtain orthonormal systems. An example of an orthonormal ladder design is presented in

section 4. Section 5 presents a sensitivity and dynamic range comparison between ortho-

normal ladder filters, doubly-terminated LC ladder simulations and cascades of biquads.

Finally, application areas for orthonormal ladder filters are suggested in section 6.
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2. State-Space and the State Correlation Matrix

An ZVr’ order state-space system can be described by the equations:
1

sX(S) = AX(s)+bU(s)

Y(s) = cTX(.s)+dU (s)

(1)

where U(S) is the input signal; X(S) is a vector of N states, which in fact are the integra-

tor outputs; Y(S) is the output signal; and A, b, c, and d are coefficients relating these

variables. The transfer-function of the above system is easily shown to be

T(S) = c~(.sI-A)-’ b (2)

As in [3], we define a vector of intermediate-functions, F(S), to be the transfer-functions

from the filter input to the states, X(S). In the frequency domain’, the vector F(S) is

obtained from

F(S) = @I- A)-‘b

whereas in the time domain, the impulse response is given by

(3)

f(r) = eAf b (4)

We require an inner product definition in order to find the correlation between the

states of a given system and thus a correlation matrix, K, such that Kij is the inner pro-

duct between Fi and Fjs Choosing to define the inner product as one which gives the

squared Lz norms along the diagonal of K, we have

’ The variable F in this papercorrespxds to the variable fin [3] (not the matrix F in [3]). This change in notation is required
to akw lhe represenLHion of timedomain variables.
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which equals the inner product in the time domain given by

In the time domain, the matrix K is found by combining equations (4) and (6).

K = 2nye At b bTe “‘dr
0

Differentiating the inside of the above integral, we find

(7)

&eAtbbTeATf) = AeAtbbTeArt + eAtbbTeArtAT
dr

(8)

and integrating both sides of equation (8) from 0 to c=, the following Liapunov equation

is obtained.

AK+KAT+2nbbT=0 (9)

The above equation allows one to find the correlation matrix, K, given the system

matrices, A and b. Note that the the correlation matrix, K, is called the controllability

grammian in the control literature [4,5] and that a similar equation is obtained in the

discrete- time domain [ 21.

Before leaving this section, we would like to describe another set of intermediate-

functions. This second vector of functions, G(S), is defined to be the set of transfer func-

tions from the input of the integrators to the output of the system. In the frequency

domain,

G(S) = cT(.sI-A)-’ (10)

This set of functions, G, together with the set of intermediate-functions F allow simple

analysis of sensitivity and dynamic range performance for a given state-space structure
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3. Orthonormal Filter Synthesis

Consider the state-space structure whose A and b matrices are given by

A =

0 a1 0
-1 0 a2

-a2* 0 .
. .

. 6 UN-1

0 -UN-l +xN

b =  .

0
0

where all ai’s are greater than zero. The A matrix is tridiagonal and is very nearly

skew-symmetric except for the single non-zero diagonal element. The b vector consists

of all zeros except for the N’th element. Using this system in equation (9) above, and set-

ting K = I, the Liapunov equation is satisfied. Therefore, the system of equation (11) is

orthonormal regardless of the actual element values as long as the structure shown is

maintained. Note that an orthonormal system is also L2 scaled for dynamic range since

the diagonal elements of K are the squared L2 norms of the integrator outputs when

white noise is applied at the filter input. We call the above system an orthonormal ladder

system for reasons which will become apparent shortly.

For the above system to be a useful design structure, a procedure is required to place

the eigenvalues of A, or equivalently the poles of the system, at positions in the left-half

plane dictated by the filter transfer-function to be realized. With this goal in mind, note

that the above structure is very similar to that of the state-space description of a singly-

terminated LC ladder filter where the states are defined to be the inductor currents and

capacitor voltages. For the even order case, the singly-tetinated ladder is shown in

figure 1. Here, the resistor value is defined to be one without any loss of generality. As
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well, reactive components are labeled ri where ri is either the capacitor or inductor value.

The matrices A and b of the state-space description of the ladder in figure 1 are found to
1

be

A =

0

. . .
1

. 0 -
rN-I0 -1 - 1

rN rN

b =

0

0

0

.

0

1

?-N

We can transform the above system to that of the orthonormal ladder system with the

structure of equation (11) by an appropriate scaling of the system states. Scaling the i’th

state of a system by a factor pi results in the i’th row of A and b being multiplied by pi

and the i’th column of A divided by pi. Using this fact, the required scaling factors, pi,

are found to be

H

1

pi= y (13)

It should be noted that this scaling process does not change the system poles. Scaling the

state-space description of equation (12) and comparing the result to the system in (1 1),

we find the following relationship between the elements of the orthonormal ladder sys-

tem and the reactive components of the LC ladder:
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(14)

1
1

aN z-
rN

Recall that our goal is to be able to place the poles of the orthonormal ladder system

at given locations in the left-half s-plane. This can be accomplished by obtaining a

singly-terminated LC ladder with the desired poles and then using the above equation to

obtain the elements of the orthonormal system. From circuit theory, we know that any

stable natural mode polynomial can be uniquely realized by an all-pole singly-terminated

ladder with positive elements [6]. Thus, one can always find a unique orthonormal ladder

system for any set of stable poles.

Note that an interesting property of all-pole singly-terminated LC ladders has

become apparent. We have shown that the states (inductor currents and capacitor vol-

tages) of an all-pole singly-terminated LC ladder are all orthogonal since the states in

equations (11) and (12) differ only in scaling. Also, the Lz norms, as defined in equation

(5), of the ladder states are k where pi is given by equation (13). These simple proper-
i

ties appear to have never been mentioned in previous literature.

In order to implement the numerator of a particular transfer-function, the proper c

vector must be obtained. To find the required c vector, we first need to find the states of

the system. To find the states, note from figure 1 that the first state of the ladder, Vr, , is

an all-pole function with unity gain at DC. Hence, the numerator of the first state of the

ladder is E (0) where E(s) is the natural mode polynomial. Using this fact together with

the state equations of the orthonormal ladder system, we can write the orthonormal states
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recursively as

Fi =Ha1 1 (SFi_1 + Cti_2Fi_2) 3 2 1 SN (17)
i-

The proper c vector is found as the multiplying coefficients required to create the desired

numerator.

We note from equations (15)-(17) that the numerators of the odd states will be even

polynomials while the numerators of the even states will be odd polynomials. This fact

helps to explain why an output summing amplifier which implements the c vector does

not have poor sensitivity properties. Specifically, in the case of finite transmission zeros

on the jc~ axis, where the transmission-zero polynomial P (s) is purely even or odd, only

even or odd elements of the c vector will be non-zero. Thus, a small change in any of the

non-zero c elements will result in transmission zeros which remain on the ~cJ.) axis.

Figure 2 shows a block diagram of a general orthonormal ladder filter. The simple

leap frog structure is a result of simulating a singly-terminated ladder. As shown in the

block diagram, the output is obtained as a linear combination of the integrator outputs2.

Although output summing (having a c vector with more than one non-zero element)

does not have poor sensitivity performance, there are situations where a circuit imple-

mentation of the c vector is difficult. An example of such a situation is the design of high

frequency transconductance-C filters where a wide-band output summing network is

’ NOIC tiat, hum eqwti~~~ (l4), the units of U[ are HZ as expwkd.  However, tie units of the feed-in term is 4Z. This surd

term is a result of forcing the states to have UIC same RMS value when a signal of constant spCClt’d density in V/GE is applied at the
filter input.
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difficult to implement. In such a situation, it is much easier to add one more input to

each of the integrators than to design a high frequency summing stage with many inputs.
1

For these situations, feed-forward (having a b vector with more than one non-zero ele- ,

ment) can be used to create the required transmission zeros. It is important to note, how-

ever, that the feed-forward system to be described does not have an orthonormaI set of F

functions.

In order to create a feed-forward system, an orthonormal ladder system with output

summing is first obtained. The feed-forward system can be obtained by creating a new

state-space system reIated to the orthonormal ladder system by [7]

A feed = A:rtho bfeed = cortho cfeed =z bortho dfeed = dortho UQ
It is easily shown from equation (2) that the two systems will have the same transfer-

function. It is also not difficult to show that the following relationship holds between the

intermediate-functions, F and G, of the orthonormal system and the feed-forward system.

Ffied = Gortho Gfeed = Fortho

Thus, for the feed-forward system, the intermediate set of functions Gjeed will be an

orthonormal set. Since the intermediate-functions are simply interchanged, it is also easy

to show from the sensitivity formulae in [3] that the feed-forward and orthonormal sys-

tems will have the same sensitivity performance with respect to system elements. Finally,

although the feed-forward system does not have the F functions scaled for optimum

dynamic range, these functions can be Lz scaled to equal levels using the standard

method of scaling.
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4. Design Example

Consider a fifth-order elliptic lowpass transfer-function

T(s) c !w_ z
0.01321~~ + 0.1037~~ + 0.1739

E(s) S’ + 0.9287s4 + 1.7726~~ + 1.0557~~ + 0.6917s + 0.1739
(20)

The reactive elements of the singly-terminated ladder which realizes these poles can be

found using partial fraction expansion [6] on the polynomial, E(s). Applying such a pro-

cedure results in the following elements.

rl = 0.9078 r2 = 2.0205 r3 = 1.9937 r4 = 1.4606 r5 = 1.0768 (21)

Using equation (14), the following elements of the orthonormal ladder system are

obtained.

al=0.7384 a2 =0.4982 a3 = 0.5860 a4 =0.7934 as =0.9287 (22)

The intermediate-functions of the orthonormal system are found using equations (15)-

(17) and are

Fl =
0.09346

E(s)
(23)

F2 =
0.1266s

E(s)
(24)

F3 =
0.2540~~ + 0.1385

E(s)
(25)

F4 =
o.4335s3 + 0.3440s

E(s)
(26)

Fs=
0.5437~~ + 0.6181~~ + 0.1018

E(s)
We easily find the c vector and scalar d required to form our desired numerator to be

(27)

cT = [1.3163 0 0.3492 0 0.02431 d = 0 (28)
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5. Sensitivity Performance Comparison

12

This section will compare the sensitivity performance of orthonormal ladder filter
1

realizations with realizations resulting from two alternate synthesis methods. One of the

alternate methods is a state-space simulation of a doubly-terminated LC ladder filter [8].

The other method is a cascade of second-order sections implemented with Tow-Thomas

biquads. The finite transmission zeros of the biquads are realized using feed-forward

with a resistor and a capacitor. Pole-zero pairing and cascade ordering are chosen using

the rule-of-thumb in [9][10]. In order to use the analysis methods in [3], we require the

cascade structure in a state-space formulation. Fortunately, a cascade of biquads design

can be easily put into a state-space description if one allows a non-constant feed-back

matrix. The non-constant feed-back matrix, A(s) consists of two matrices, Al and AZ,

such that

A(s) = Al + sA2 cw
With an active-PC circiut, the   A2   elements are realized with capacitor feed-ins to integra-

tors. Finally, for a fair comparison with orthonormal ladder filters, Lz dynamic range

scaling was always performed on filters before comparing sensitivity or dynamic range.

Since different criteria are used to judge the filter performance in the passband and

stopband, slightly different measures will be used in the two regions. However, in both

bands, the multiparameter sensitivity value presented by Schoeffler [1 l] is used to find

the standard deviation in the transfer-function for standard deviations of 1 percent of the

nominal component values. The transfer-function deviation, cr 1 TACO) 1, is found from

I

1
2-F

(30)
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. .

Yi
where - represents the gain of the i’th integrator. Formulae in [3] were used to obtain

s

the above derivative. This deviation measure takes into account all the passive elements

of an ac tive-RC implementation.

Since transfer-function deviation is often the most critical performance measure

the passband, the passband deviation in dB, D(U), is used for sensitivity performance

the passband. D (co) is found from CJ 1 T (jco) 1 and 1 T (ja) 1 as

in

in

D(U) = 2OLGG(l+ dWW I
IWW (31)

This passband measure gives the standard deviation of the passband in dB from the ideal

response for standard deviations of 1 percent of component values.

In the stopband, an expected gain curve is plotted. This stopband expected gain

value, To(a), is found from

T&J) = 2OLGG[ 1 T($.I) 1 + 01 T(jco) I] (32)

This stopband measure allows one to easily see the expected stopband gain for standard

deviations of 1 percent of component values. Note that if the passband deviation meas-

ure were used in the stopband, it would go to infinity at transmission zeros.

For dynamic range comparisons, the figure of merit xi 1 1 Gi 1 13 will be used [3].

This figure of merit is the total output noise power obtained when uncorrelated white

noise sources of unit power spectral density are applied to each of the integrator inputs.

Thus, a filter with good dynamic range will have a low number for & 1 1 Gi 1 13.

For the fifth-order example above, three state-space descriptions were obtained

using the different design approaches. The state-space system for the ladder simulation is
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-0.4643 -0.5823 0 -0.082 1
0.8408 0 -0.5994 0

A = -0.1064 0.527 1 0 -0.496 1
0 0 0.6153 0

-0.0097 0.0479 0 0.7574

c* =[ 0 0 0 0 1.3620 :

and the state-space system for the biquad cascade is

-0.0045
0

-0.0272
-0.5892
-0.4643

J cf=o

-0.3379 0 0 0 0
-0.7709 -0.7967 0 0

A =  (0.0922)s 0.6:9 1 -0.4577 0 0
0 0 1.4464 0 -1.8603
0 0 (0.3191)s 0.5348 -0.1330

c* = [ 0 0 0 0 1.3622 ] d = 0

b Z

b Z

0.4655
0

0.1066
0

0.0097

0.3297
0
0
0
0

Figure 3 shows a plot of the ideal transfer-function response along with passband devia-

tions, D(U), and stopband expected gain, 7’0(~) curves. We see from these curves that

the orthonormal ladder system has a passband performance somewhere between the per-

formance of the ladder simulation and the biquad cascade. The stopband performance of

the orthonormal ladder system is slightly worse than that of a cascade of biquads. The

total output noise for the ladder, orthonormal, and cascade filters of this fifth-order exam-

ple are 47,65, and 117 respectively.

An eighth-order elliptic bandpass filter example presented in [3] was also investi-

gated. For this eighth-order example, the resulting curves are shown in figure 4. We see

from these curves that the orthonormal ladder filter still performs quite well in the

passband and upper stopband but is slightly worse than the other two designs in the lower

stopband. The reason for the poorer sensitivity performance at DC is explained as fol-

lows. The cascade design contains two bandpass filter biquads and therefore varying any

of the components will not affect the two zeros at DC. Similarly, the ladder simulation

(34)
1

(36)
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will always have two zeros at DC because we are simulating a ladder with two zeros at

DC. However, the orthonormal ladder filter creates the two DC zeros by an output sum-

ming network and thus the zeros will shift away from DC with component variations.

The total output noise for the ladder, orthonormal, and cascade filter for this eighth-order

example are 73, 100, and 151 respectively.

These two examples indicate that an orthonormal ladder filter has a passband sensi-

tivity performance as least as good as a cascade of biquads (often much better) and a

slightly worse stopband performance. The dynamic range performance of orthonormal

ladder filters appears to fall between that obtained with LC ladder simulations and cas-

cade designs.

6. AppIication Areas

This section will discuss what we feel are important application areas for orthonor-

ma1 ladder filters other than as a general filter synthesis technique. The first application

area is programmable filters. When changing a filter circuit from one transfer-function to

another, it is important that the performance of the circuit not be severly degraded. Since

we have shown that the orthonormal ladder structure is inherently scaled for optimum

dynamic range, the circuit’s elements can be changed to new values while maintaining

the circuit’s good dynamic range.

Similar to programmable filters is the field of adaptive filters. In this case, the

filter’s parameters are dynamically changed to minimize some error criteria. If one has

an algorithm to adapt the poles of the system then, as above, an orthonormal filter can be

adapted and maintain good dynamic range. However, there is another property of ortho-

normal ladder filters which lends itself well to adaptive filters. The fact that the
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integrator outputs are all orthogonal with white noise at the input is quite important. It is

shown in [12] that with an adaptive linear combiner, adaptation is much faster if all the

inputs to the linear combiner are orthogonal. Thus, if the A and b elements remain fixed

and the c vector of the state-space system is used as a linear combiner, the adaptation

process converges quickly. One reason to consider analog adaptive filters is to process

signals with much higher frequency contents than is now possible with digital filters [13].

7. Conclusions

We have presented a new filter structure called orthonormal ladder filters. These

filters are easy to synthesize through the use of singly-terminated LC ladders. As well,

orthonormal ladder filters are automatically Lz scaled for optimum dynamic range by the

very nature of their structure. Also inherent in their structure is the fact that the integrator

outputs are all orthogonal when the input is excited by white noise. We have also shown

that orthonormal ladder filters can realize any stable transfer-function and have a perfor-

mance comparable to a cascade of biquads. We feel that orthonormal ladder filters should

be useful as a general design method and may be useful in the implementation of pro-

grammable or adaptive filters.

It was also shown that a singly-terminated LC ladder driven through its resistor has

orthogonal states. As well, the Lz norm of the ladder states were shown to have a simple

relationship to the elements of the ladder.
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Figure 1: A singly terminated ladder and its states
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Figure 2: Block diagram of an orthonomal ladder filter
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