
Bandpass  Sigma-Delta Modulation

Abstract

A bandpass version of sigma-delta modulation is presented, with

simulation results for second and fourth-order converters. For the

fourth order converter operating at 8MHz, simulations demonstrate a

resolution of 16 bits over an 8kHz band centred at 1MHz. Applications

may include analog to digital conversion for AM radio, and digital to

analog conversion for narrow-band RF systems.

Introduction: Sigma-delta modulation1*2v3 is a technique for doing both analog-

to-digital and digital-to-analog conversion that uses very simple analog com-

ponents and digital signal processing to achieve high accuracy and an immu-

nity to component errors. Thus far, research has focused on systems wherein

the sampling rate is much greater than the highest frequency component of

the input. This letter extends the range of application of sigma-delta modula-

tion by demonstrating that the sampling rate need only be much greater than

the bandwidth of the input. The resulting modulators are dubbed bandpass

sigma-delta modulators.



A basic premise of sigma-delta modulation is that the sampling rate is

much greater than the highest frequency of interest present in the input.

This is necessary because ordinary (lowpass) sigma-delta modulators zero

quantization noise only near DC. If one were to null quantization noise at

some other frequency, say ws, then one would get good accuracy in a band

a r o u n d  wa. FigI ure 1 illustrates the pole and zero placement of the error

transfer functions for lowpass and bandpass sigma-delta modulators, and

highlights the respective passbands.

A narrow bandpass post-filter, centred at ws, is required to attenuate the

out-of-band quantization noise, in correspondence with the narrow lowpass

post-filter needed by ordinary sigma-delta modulation. The resultant system

should possess all the favourable characteristics of regular sigma-delta mod-

ulation, namely inherent linearity and tolerance to component variations.

Design: We begin the design of a modulator with the selection of H, the

error transfer function. By reversing the conventional analysis procedure, it

is possible to derive a modulator that realizes H provided H - 1 is strictly

causal, i.e. H(m) = 1. This letter presents results for two choices of H:

fjl z (1 - I/%-’ + z-2)
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H2 =
(2 - 42 + 1)2

~4 - 2.1757~~ + 2.3077.~~ - 1.30549 + .3846

The first is second-order and has single zeros at q&j* , i.e. &fS,

and two poles at z = 0. This modulator mimics the behaviour of a regular

first-order sigma-delta modulator in that the zero of H in the centre of the

band is a first-order zero. The second modulator is fourth order, with zeros

of multiplicity two, and so corresponds to a second-order lowpass sigma-

delta modulator. It is necessary to move the poles away from the origin

for a fourth-order modulator to be stable. The poles were chosen such that

max [H(e@)[ = 1.625, following the technique presented by Lee.4 In brief,
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Lee claims that the condition ~~~;;~fH(ej~)j < 2 ensures that the resulting
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modulator is stable, and suggests the use of error transfer functions with

a monotonic magnitude response. Hz satisfies these requirements. It is a

straightforward task to design higher order converters using Lee’s technique.

Theory: Near a zero of order n, the magnitude of the error transfer function

is



The noise power on one side of this zero is given by

We have assumed that the above approximation for /HI holds, and that the

quantization error is white and uniformly distributed over [-1, +l], so that

i2 = $. If we identify the oversampling ratio as R = 5, and assume an
WB

a2
input signal power of y, corresponding to a sine wave of amplitude a, then

the signal-to-noise ratio of an nth order lowpass converter is:

SNR = 10 log
3a2(2n + l)I12n+1

2 k%+
do

.

For a bandpass converter, we need to

wc + s, and the order of each zero is
2

integrate the noise from wc - -w; to

half the order of the converter. Thus

the signal-to-noise ratio of an nth order bandpass converter is:

SNR = 10 log
3a2(n + l)(2R)n+1 do

4k2rn (5)

Simulations: The operating band

sponding to an oversampling ratio

ratio for both modulators against

was taken to be ifs x ( $ Z/I &), corre-

of 512. Figure 2 plots the signal-to-noise

input amplitude. The simulations were
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done by injecting single tones into the converter for 218 samples and then

doing a discrete Fourier transform with a Hanning window to find the ratio

of the tone power to the in-band noise power.

According to Equation 5 (substituting n = 2, R = 512, k = fi), we

expect a SNR of 60.8dB for the second order modulator when the input is

-20dB. The simulations yield nearly 60dB. For the fourth order modulator,

(n=4,R=512,k=l3), we expect 94.1dB and the simulations show a SNR

of 99dB.

Applications: It is believed that a bandpass sigma-delta modulator can be

constructed to perform analog-to-digital conversion for narrowband signals

such as those found in AM radio. For the fourth order modulator presented

here, an 8MHz sampling rate is enough to achieve a resolution of better

than 16 bits at lMHz, over an 8KHz bandwidth. It is assumed that the

digital filter can be made sufficiently narrow and noise-free to achieve the

performance predicted by the simulations. Note .that we do not require a

narrowband front end: the digital filtering to eliminate sigma-delta noise

also handles out-of-band signals.
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Another possible application is in digital to analog conversion for RF

systems. Here the modulator is digital and the bandpass filter is analog,

a tuned circuit for example. The bi-level coding provided by sigma-delta

modulation allows the driving circuitry to be operated in a switching mode,

which is known to be highly energy efficient. The noise-shaping property

may result in an improvement over pulse-width modulation.

Conclusions: Simulation results for an extension of sigma-delta modulation,

bandpass sigma-delta modulation, were presented. It was suggested that

bandpass sigma-delta modulation could be applied to the analog-to-digital

and digital-to-analog conversion of high-frequency narrowband signals.
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Figure 1: Comparison of the pole and zero placements of the error transfer

function for a) an ordinary second-order lowpass sigma-delta  modulator b) a fourth-

order bandpass sigma-delta modulator. The passbands are highlighted.
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Figure 2: SNR versus input amplitude for second- and fourth-order modula-

tors.
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