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Comparison of DC Offset Effects 
in Four LMS Adaptive Algorithms 

Ayal Shoval, Student Member, IEEE, David A. Johns, Member, IEEE, and W. Martin Snelgrove, Member, IEEE 

Abstract-It is well known that dc offsets degrade the per- 
formance of analog adaptive filters. In this paper, the effects of 
dc offsets on four variations of the stochastic gradient algorithm 
are analyzed. Assuming a Gaussian probability distribution for 
the input signal and error signal, the output mean squared error 
(MSE) performance in the presence of dc offsets is evaluated for 
each of the algorithms. The theoretical work is compared with 
computer simulations and the results, together with convergence 
properties of each of the algorithms and their respective hard- 
ware requirements, are used in selecting the most appropriate 
algorithm. Although a Gaussian input distribution is assumed, 
it may reasonably be inferred that the critical results obtained 
should also hold for other input distributions. 

I. INTRODUCTION 
HE ESSENCE of an adaptive filter is the implementation T of the algorithm that controls the coefficients of the 

programmable filter. Among the many possible algorithms, the 
least-mean-square (LMS) algorithm has been widely used due 
to its implementation simplicity. For even greater implemen- 
tation simplicity, the sign-data, the sign-error and the sign- 
sign LMS (SD-LMS, SE-LMS and SS-LMS, respectively) 
algorithms have been proposed and investigated extensively 
in the technical literature [ 11-[7]. The findings of these works 
show that all variants of the LMS algorithm converge only 
if the input signal is sufficiently exciting [4] and that even 
when sufficiency conditions are met, the SS-LMS and the 
SD-LMS algorithms can diverge due to misalignment of the 
gradient signals [4]-[6]. That is, unlike the LMS or the SE- 
LMS algorithms which force the coefficient updates vector 
to move along a line in the coefficient space parallel to 
its gradient signal vector, the SD-LMS and the SS-LMS 
algorithms force the coefficient updates vector to move along a 
line in the coefficient space misaligned from its gradient signal 
vector and parallel to the sign of its gradient signal vector. 
Consequently, whereas in the former case the coefficient 
updates will, on average, move in a direction of “steepest 
descent” of the squared error surface, in the SD-LMS and 
the SS-LMS algorithm case the misalignment can lead to 
coefficient divergence and may also cause the coefficient 
updates to “climb” the error surface. In addition, it has 
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been shown that while both the LMS and the SD-LMS 
algorithms will ideally force the filter coefficients to their 
optimal locations as the error signal is reduced to zero (i.e., 
zero MSE), the SE-LMS and the SS-LMS algorithms will 
experience finite minimum MSE. This finite MSE results from 
the fact that slicing the error signal prevents the effective error 
signal from reducing to zero. In fact, it has been claimed [8] 
that as the coefficients reach their optimal values and the error 
signal is reduced, the effective error signal increases potentially 
causing the coefficients to jerk. Thus, it is tempting to use 
the LMS algorithm and dispense with the SS-LMS algorithm. 
However when considering algorithm implementation, the 
LMS algorithm is the most complex while the SS-LMS 
algorithm is the simplest. The SD-LMS algorithm, being 
simpler than the LMS algorithm, requires N slicers and N 
trivial multipliers which is more complex than the SE-LMS 
algorithm requiring 1 slicer and N trivial multipliers where N 
is the number of coefficients begin adapted. Thus the choice 
of which algorithm to use is difficult. 

When implementing andog adaptive filters, not only are 
algorithm architecture complexity and algorithm convergence 
important issues, but also dc offsets. Although some publica- 
tions have treated dc offsets in adaptive filters [2], [9]-[12], 
few results are available on the effects of all sources of dc 
offsets on all four variations of the LMS algorithm. Since 
algorithm misalignment and algorithm convergence rate are 
covered extensively in the technical literature [3]-[7], this 
paper focuses on the performance of the four variants of 
the LMS algorithm from a dc offset point of view. The 
results presented here should assist the designer is overcoming 
the perplexing issue of selecting the appropriate hardware 
implementation for the coefficient update algorithm. 

To keep the analysis simple and tractable, discrete-time 
systems are used and, as a working example, an adaptive 
linear combiner whose input is zero-mean Gaussian noise 
will be assumed. Although this input forms a special case, 
intuitive comments will be given for arbitrary input statistics. 
The accuracy of the discrete-time system in analyzing the 
effects of dc offsets in a continuous-time linear combiner 
might be questionable, however the relations obtained here 
are based on taking the mean and variance of the product 
of filter gradient and error signals. Since a continuous-time 
linear combiner can be well approximated by a discrete- 
time system running at a very high oversampling rate, the 
relations for such a system would not depart severely from 
those discussed herein as the sampling rate is increased. In 
addition, we would like to point out that often continuous-time 
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techniques are used in implementing the signal path (i.e., the 
filter) while sampled-time techniques are used in realizing the 
adaptation algorithm. Thus the analysis performed here, which 
focuses on dc offsets in the algorithm circuitry, is sufficient to 
provide detail as to the comparative performance of each of the 
candidate algorithms. Finally, while some approximations are 
made in deriving analytical expressions, simulation results are 
presented showing close agreement which is sufficient since 
typically only rough estimates of dc offset values are known. 

Section I1 briefly reviews the underlying expressions that 
characterize an adaptive linear combiner and identifies the 
location of the offsets for each of the four algorithms: LMS, 
SD-LMS, SE-LMS and SS-LMS. In Sections 111-VI the effect 
of the above offsets on the performance of each of the algo- 
rithms assuming a Gaussian input, is analyzed. In Section VI1 
simulation results are given and compared with the analytical 
predictions. 

11. PROBLEM FORMULATION 

For an adaptive linear combiner, as shown in Fig. 1, the 
output at time index k is given by 

N 

~ ( k )  = C w i ( k ) z i ( k )  (1) 
i=l 

where w;(k) is the ith coefficient value and zi(k) is the 
ith gradient signal as well as the ith input signal. In vector 
notation, (1) can be represented as 

(2) T Y k  = xkwk. 

The error signal is 

e ( k )  = S ( k )  - Y(k) 
= xT[w* - W k ]  (3) 

where S ( k )  is the desired response and w* is a vector of 
optimal coefficients. Defining C k  to be the present coefficient 
estimate, or mathematically 

C k  = w* - w k  (4) 

then (3) can be re-written as 

e ( k )  = xrck. ( 5 )  

Assuming the input is zero-mean, we have 

E[Xk] = 0 (6 )  

where E[.] represents the expectation operator. To allow a 
solution of otherwise very complicated expressions, it is also 
assumed that the gradient signals and the filter coefficient 
estimates are statistically independent, thus 

E[XrCk] = E[xr]E[ck] .  (7) 

This assumption is not uncommon [5] and is acknowledged to 
be an approximation since coefficient computation depends 
on the gradient signals. However, for slow adaptation the 
coefficient estimates are weakly dependent on the gradient sig- 
nals and the assumption invoked by (7) provides satisfactory 

Fig. 1 .  A general adaptive linear combiner. 

steady-state results as will be noted from the simulation results 
herein. Equations (5)-(7) also yield 

E[e(k)] = 0. (8) 

We also define 02 E E[z: (k) ]  and 02 E[e2(k)] to be 
the mean-squared value of the gradient and the error signals, 
respectively. The quantity 02 represents the filter output MSE 
and is the performance measure to be evaluated for each of 
the four algorithms. 

The LMS algorithm used to update the filter coefficients is 
given below with modeled dc offsets inserted at appropriate 
locations 

wk+i = w k  + 2,4(xk + m x ) ( e ( k )  + m e )  + m) (9) 

where 

m x  = [mzlmzZ ' ' ' mzNIT (10) 

is a vector representing the unwanted dc offsets on each of 
the gradient signals, me represents the unwanted dc offset 
on the error signal, ,LL is a small step size the governs 
the rate of adaptation and m is a vector representing the 
unwanted equivalent dc offsets at the input of the accumulator 
(integrator) and at the output of the multiplier where 

(11) T m =  [ m l m z . . . m ~ ]  . 
Fig. 2 depicts the equivalent block diagram representing (9) for 
the ith coefficient. Upon substituting (4) into (9) one obtains 

ck+l = ck - 2p((xk + m x ) ( e ( k )  + m e )  + m). (12) 

The equivalent expression of (12) for the three other variants 
of the LMS algorithm SD-LMS, SE-LMS, and SS-LMS, 
respectively, are: 

LMS 

SD-LMS ck+l = ck - 2,LL(Sgn[Xk + m x ]  

x ( e ( k )  + me) + m) (13) 

(14) 
SE-LMS ck+l = ck - 2p((xk + m x )  

x sgn[e(k) +me]  + m) 

x sgn [ e ( k )  +me]  + m) 
SS-LMS ck+l = ck - 2,LL(Sgn[Xk m x ]  

(15) 
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Fig. 2. Details of the LMS update circuitry showing dc offset sources. 

111. THE LMS ALGORITHM 

Taking the expectation of both sides of (12) we obtain 

E[Ck+lI = E [ C k ]  

- 2@[(xrc + mX)(e(k) + m e )  + m]. (16) 

At steady-state (i.e., as k -+ CO), we have E[cL+~] = E[ck]. 
Using this fact together with (6) and (8), (16) simplifies to 

(17) E[xrce(k)] = -(m + mem,). 

Substituting (5) and (7) into (17) results in 

to E [x~]  and is therefore negligible, (23) can be solved for 
the excess MSE at steady-state 

0," M (m + mem,)T R-T(m + mem,). (24) 

The result in (24) shows that the excess MSE is inversely 
proportional to the power of the input signal through the 
R-Tterm; lower input signal powers, for fixed offset levels, 
produce higher excess MSE. The excess MSE is also directly 
sensitive to all offset sources. In analog implementations the 
dc offset at the output of the multiplier and offsets at the input 
to the integrator, m ,  would typically dominate (relative to me 
or m,). Clearly, to minimize the excess MSE nulling of me or 
m, and m would be required and may be plausible in certain 
applications using ac-coupling and offset cancelled integrators, 
respectively. On observing (24), it is also interesting to note 
that it is possible to minimize the excess MSE by adjusting the 
dc offsets to cancel one another rather than nulling me or m, 
and m. However, satisfying this equality implies adaptively 
tracking a vector of integrator input offset and multiplier 
output offset, m ,  to a vector of gradient signal bias, m,, scaled 
by -me. This approach is not a trivial one when considering 
hardware implementation. Finally, notice that the excess MSE 
due to this offset cannot be compensated by reducing p. 

~ [ x & ]  ~ [ c k ]  = -(m + memx). (18) IV. THE SIGN-DATA LMS ALGORITHM 

Letting Taking the expectation of both sides of (13), using (5)-(8) 

R E [x~x;] 
and simplifying as before yields 

(19) 
-m = E[sgn[x+ mx]xT]E[c] + E[sgn[x+ m,]]m,. (25) 

and dropping the time index k (for mathematical convenience), 
at steady-state the following relations hold: For a zero-mean Gaussian noise input with variance 02 = Rii, 

it can be shown that (see Appendix A): 
E[c] = -R-'(m + mem,) (20) 

E[cT] = - (m + memx)TR-T 
E[sgn[x+ m,]] = erf - 1 [El 

T 
To solve for the residual MSE due to offsets, consider once erf[*] . . .  erf[=]] =kmX. (26) 

Using Price's Theorem [14] it can be shown that (see Appen- 
dix B): 

again the expression in (12). Taking the mean-squared value m m 
of both sides yields 

before, yields 

o = ~ E [ ( x ~ x  + 2xTmx + mzm,) 
where Rij  = E[Gx~] as before. Substituting (26) and (27) 
into (25) yields 

x (e2 + 2eme + m:)] - pmTm E[cT] = - (m + m,k,,)'R&. (28) 

Taking the mean-squared value of both sides of (13) and 
simplifying as done previously one obtains 

- E[c'](m + m,m,) - E[e2] - E[cTe]m,. (23) 

The solution of (23) for arbitrary p is tedious and results in 
a value for the MSE that has a weak dependence on p. Thus 
assuming p ---t 0, making use of (21) and noting from (5) and 
(7) that for slow adaptation the last term in (23) is proportional 

l o = p ( ~ o , 2  + - mTm) - E [ c ~ ]  

x ( m  + mekmx) - E[cTsgn[x + m,]e]. (29) 

~ 

I I I ' I  



Using (7) and (27) the last term in (29) simplifies to 

E[cTsgn[x + m,]e] = E [ ~ ~ R ~ ~ ~ ] .  (30) 

An analytical expression for the excess MSE requires the 
evaluation of (30). Consider the case for a Gaussian white 
noise; (30) reduces to 

N 

E[cTsgn[x + m,]e] = pcz e:ze-m11/2c2 (31) 
i=l 

lr 

where 82% = 02" + E[ci]' and ~ 2 %  represents the variance of 
c,. Making use of the assumption in (7), one can derive 

N 

0," =o;ce ," , .  (32) 
z = 1  

Assuming the mean-squared value of all the coefficient es- 
timates equal the same value, or mathematically, 
82, the following expression, making use of (28)-(32) is 

obtained for the excess MSE as a function of the interfering 
offsets 

M 

The expression in (33) assumes the case where the input 
signals z ; ( k )  are Gaussian white, however it is not clear if the 
same expression can be used for nonwhite inputs. Fortunately, 
(33) does give reasonable estimates for general inputs in the 
practical case where the square of the offsets on the gradient 
signals, m$ are sufficiently small compared to the variance of 
the gradient signals, g:. In this case we can then approximate 
the exponential terms in (27) by unity and (30) can be reduced 
to 

E[cTsgn[x + m,]e] = (34) 

Upon substituting (28) and (34) into (29) an expression for 
the excess MSE is obtained that is given by (33) with m,i in 
the denominator set to zero. 

The expression in (33) shows that the performance of the 
SD-LMS algorithm is similar to the LMS algorithm from a 
dc offset point of view; the dominant offset terms appear 
explicitly in the numerator of (33). The difference here is 
that the excess MSE is a weak function of the input signal 
power' for small p. This effect is a consequence of the slicing 
operation which results in the loss of information regarding 
the amplitude of the signal and would be similarly manifested 
for arbitrary input distributions. 

'Signal power, u:. appears both in the numerator (via RGG) and 
denominator of (33). 
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V. THE SIGN-ERROR LMS ALGORITHM 

Taking the expectation of both sides of (14) and simplifying 
as before yields 

-m = E[x sgn[e + me]] + E[sgn[e + m,]]m,. (35) 

Assuming e( IC) has a Gaussian distribution at steady-state,2 
using the results in Appendexes A and B as well as (7), it can 
be shown from (35) that 

Taking the mean-squared value of both-sides of (14), simpli- 
fying as before and collecting terms the following expression 
results 

- E[cT]m - E[cTsgn[e + m,]]m,. (37) 

Defining ET to be a vector representing the ac component 
of the filter coefficient estimates, or mathematically, eT E 
cT - E[cT], and substituting into the last term in (37) yields 

( m+erf [ - SImx) 
- E[ET sgn[e + me]]m,. (38) 

The last term in (38) measures the correlation of ET with 
sgn[e + me] and is approximated to zero since for slow 
adaptation the ac component of the filter coefficient estimates, 
E T ,  is small. Thus, (38) together with (36) provide a nonlinear 
function in 0: that describes the MSE as function of p and 
the interfering offsets. 

While (38) is the main result for this section, it is also of 
interest to solve (36) for two limiting cases. To find the limiting 
value of the MSE for the case of small p, set p = 0 and solve 
(38) to obtain (39) shown at the bottom of the page. For the 
case of nonzero p and me = 0, it can be shown from (36) and 
(38) that the excess MSE is 

Comparing (39) with the excess MSE for the LMS algorithm 
(24), observe that minimizing (39) implies the minimization 
of me or m while the minimization of (24) implies the 
minimization of the dominant offset term m. Thus in analog 

*This assumption becomes better for small p for which the ac component 
of the coefficients is small and thus the distribution of the error signal follows 
that of the input. 
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implementations where the offsets represented by m typically 
dominate (relative to me or m,), much better MSE perfor- 
mance in the presence of dc offsets can be achieved using 
the SE-LMS algorithm. This result can be seen from another 
perspective by taking the limiting values of fl for the erf [a] 
terms in (39) and keeping only the dominant offset terms 
in (24) to obtain the following ratio (see (41) shown at the 
bottom of the page). The ratio typically exceeds unity for 
practical offset levels including the case where the offset terms 
represented by me and m are of the same size, owing to the 
natural logarithm operator. Similar reasoning can be applied 
to the SD-LMS algorithm. The minimization of the offset 
term me is not difficult as it entails the minimization of the 
input offset of a ~omparator.~ This can be achieved by using a 
clocked comparator or the technique in [15]. Compensation of 
the dominant offset term, m, is feasible in integrated form but 
its practical limiting value would be higher than that obtained 
by compensating me. 

In the limiting case of me = 0, notice that in (40) the MSE is 
shaped by p and therefore achieves better MSE performance 
for small p than (24) or (33). However observe from (40) 
that in the absence of dc offsets4 the SE-LMS algorithm, 
unlike the LMS or the SD-LMS algorithm, will sustain a 
finite excess MSE that depends on p. This is a consequence 
of slicing the error signal which prevents the effective error 
signal from going to zero at steady-state. As well, notice that 
offset cancellation between offsets can also improve the excess 
MSE as mentioned for the LMS algorithm. 

It is also of interest to note that the degrading effects of dc 
offsets can be alleviated by passing the error signal through 
a high gain stage prior to coefficient computation [2]. As a 
result, the MSE can be shown to be reduced by a factor 
proportional to the gain factor. This solution is intuitively 
simple but becomes more difficult to achieve in high-frequency 
applications. It is instructive to point out that the SE-LMS 
algorithm inherently provides this high gain which, although 
nonlinear, is frequency independent. 

Finally, note that unlike the LMS and the SD-LMS algo- 
rithms, the effective error signal in (14) cannot exceed unity in 
magnitude. Thus, if on average lmil > [xi +m,;I, then ci will 
diverge. Intuitively this means that if the signal component, 
xi, is small relative to the offset component, mi - mIi, then 
the parenthesized term in (14) will be dominated by the offset 
component, resulting in the respective coefficient to saturate 
at its limiting value. 

VI. THE SIGN-SIGN LMS ALGORITHM 

Although the circuit implementation of the SS-LMS algo- 
rithm is quite simple, the analysis of its performance from an 
offset point of view is the most complex of the algorithms 

AC-coupling e( t )  to eliminate signal offset can be feasibly done offset-free 
using passive IC components for most high-speed applications. 

4 ~ ~ t  the case for analog circuits. 

discussed so far. Thus various approximations will be used to 
obtain results which depict the behavior of the excess MSE as a 
function of the interfering offsets. Simulation results will show 
that the analytical results obtained by using the approximations 
satisfactorily predict the behavior of the excess MSE. 

Assuming e(k) is Gaussian, taking the expectation of both 
sides of (15) one obtains 

-m = E[sgn[x+ m,]sgn[e +me]].  (42) 

Making use of the work in [ 161 and the results of the previous 
sections, (42) can be approximated to give5 

(43) 

Taking the mean-squared value of both sides of (15) one 

0 = p ( N  - mTm) - E[cT sgn [x + m,] sgn [e + me]] 

obtains 

- E[cT]m. (44) 

Using [16], the procedure in obtaining (31)-(33), (43), and 
substituting (43) into (44) yields 

(45) 

Again, a nonlinear function in a," describes the MSE as 
function of p and the interfering offsets. 

As in the SE-LMS case, (45) can be solved for the limiting 
case of a small p to give the excess MSE for the SS-LMS 
algorithm as 

-m: 

With me = 0, (45) can be solved to give the excess MSE as 

The results show that the SS-LMS algorithm in the presence 
of dc offsets has much better excess MSE performance than 
the LMS algorithm or the SD-LMS algorithm for the same 
reasons as the SE-LMS algorithm. Notice in (46), as noted in 

'Although we cannot rigorously derive the result of (43), we believe the 
approximation models the actual result. The validity thereof, can be noted 
from the previous results and the simulations. The derivation is based on the 
assumption of Gaussian signalling and repeated use of Price's Theorem. 

(mTR-Tm) In [ f (m f m,)TR-T(m f m,)] 
4 , L M S  c( 

4 , S E - L M S  -m: 
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Fig. 3. The setup used to simulate the adaptive filter. 

(33), the predicted MSE is weakly dependent on the input 
signal power, 02. As well, from (47) we see that in the 
absence of dc offsets, the SS-LMS algorithm, like the SE- 
LMS algorithm, will experience a residual excess MSE that 
is shaped by p. Finally note that if [mil > 1, it can be 
inferred from (15) that the sign of the parenthesized term will 
be governed by mi and the coefficient estimate c i ( k )  will 
drift in a direction governed by this offset and the SS-LMS 
algorithm will diverge. This behavior is similar to that alluded 
to for the SE-LMS algorithm. 

VII.  NUMERICAL VERIFICATION 

A 5-tap (N = 5) linear combiner, as illustrated in Fig. 
3, was investigated to compare the simulated pedonnance of 
the filter with the analytical predictions. The input, g(k), was a 
zero-mean white Gaussian distribution. The first-order lowpass 
filter was used to vary the input statistics to the linear combiner 
through the parameter a where 

The results of the simulations and the predicted analytical 
calculations for various cases are provided in Fig. 4. The 
circles depict the predicted MSE calculated from (24), (33), 
(38), and (45) and the simulated MSE at the respective 
value for p. A nonlinear equation solver provided by the 
software package MATLAB [17] was used to solve (38) and 
(45). The dotted lines and the solid lines connect the circles 
obtained from the analytical expressions and the simulations, 
respectively, to exemplify the behavior of the MSE as function 
of p. The offsets levels for Fig. 4(a)-(d) are: 

me = 0.01 
mz = [0.02 -0.01 -0.03 -0.005 0.071 

mT = [0.08 0.01 -0.05 -0.02 -0.061 

while the offset levels for Fig. 4(e) and (0 are: 

me = 0.02 
mz = [0.02 -0.0 -0.07 0.05 -0.008] 

mT = [0.03 -0.1 0.005 -0.08 -0.061. 

The value for a, o$ and R for each sub-figure sequentially 
are: 

a = 0,ff; = 1, 
0.9968 -0.0010 -0.0005 -0.0040 0.0006 

-0.0010 0.9968 -0.0010 -0.0005 -0.0040 
R = -0.0005 -0.0010 0.9968 -0.0010 -0.0005 

-0.0040 -0.0005 -0.0010 0.9968 -0.0010 i 0.0006 -0.0040 -0.0005 -0.0010 0.9968 

a = 0.4,a: = 1, 
1.1849 0.4722 0.1869 0.0711 0.0291 
0.4722 1.1849 0.4722 0.1869 0.0711 
0.1869 0.4722 1.1849 0.4722 0.1869 
0.0711 0.1869 0.4722 1.1849 0.4722 
0.0291 0.0711 0.1869 0.4722 1.1849 

a = 0.8,a: = 1, 
2.7560 2.2019 1.7592 1.4051 1.2261 
2.2019 2.7560 2.2019 1.7592 1.4051 
1.7592 2.2019 2.7560 2.2019 1.7592 
1.4051 1.7592 2.2019 2.7560 2.2019 
1.1261 1.4051 1.7592 2.2019 2.7560 

a = 0 . 4 , ~ ;  = 0.25, 
0.2962 0.1180 0.0467 0.0178 0.0073 
0.1180 0.2962 0.1180 0.0467 0.0178 

R = 0.0467 0.1180 0.2962 0.1180 0.0467 
0.0178 0.0467 0.1180 0.2962 0.1180 
0.0073 0.0178 0.0467 0.1180 0.2962 

4 
R(Fig.4b) 
1 

- - 

a = 0 .65 ,~ ;  = 1, 
1.7232 
1.1192 

R = 0.7240 
0.4636 
0.3028 

5.2106 
4.6857 

3.7899 
3.4121 

1 
a = 0.9,a; = 

1.1192 
1.7232 
1.1192 
0.7239 
0.4636 

1, 
4.6857 
5.2106 
4.6857 
4.2141 
3.7899 

0.7240 
1.1192 
1.7232 
1.1192 
0.7239 

4.2141 
4.6857 
5.2106 
4.6857 
4.2141 

0.4636 
0.7239 
1.1192 
1.7232 
1.1192 

3.7899 
4.2141 
4.6857 
5.2106 
4.6857 

1 0.3028 
0.4636 
0.7239 
1.1192 
1.7232 

Fig. 4(a)-(d) depicts the effects of p and R on the excess 
MSE for each of the four algorithms with the same offset 
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of p.  R, and different offset levels for the four LMS based algorithms 

levels. Fig. 4(a) shows the case for a Gaussian white noise 
input. Fig. 4(b) and (c) show the results for more colored 
Gaussian inputs as given by the R matrices above. Fig. 4(d), 
unlike Fig. 4(a)-(c), shows the results when the input power 
is smaller than unity. Observe that in this case (compared 
with Fig. 4(b)) the excess MSE using the LMS algorithm is 
greatly increased, while the others are less sensitive to input 
power as was discussed herein. Fig. 4(e) and (f) shows another 
case for different offset levels. For the case of Fig. 4(f), the 
LMS algorithm showed evidence of divergence for p = 0.01 
hence this point is omitted from the plot. The results of Fig. 
4 verify the derived analytical expressions given by (24), 
(33) ,  (38), and (45) for arbitrary offset levels and arbitrary 
R matrices. Specifically, note that the SE-LMS and the SS- 
LMS algorithms are shaped by p and that the limiting cases 

for p -+ 0 expressed by (39) and (46) compare well with 
simulated data. Observe also from all the results that the SE- 
LMS and the SS-LMS algorithms achieve much better MSE 
performance in the presence of dc offsets. In addition, it is 
evident (Fig. 4(c) and (f)) that the analytical results deviate 
from the simulation results at larger p and for more colored 
inputs, as the approximations made become less appropriate 
for these conditions. 

Fig. 5 depicts the excess MSE for each of the algorithms 
as function of p with me = 0. The offsets and the matrix 
R (corresponding to a highly correlated input vector) for this 
simulation were: 

m: = [0.02 -0.01 -0.03 -0.005 0.071 

mT = [0.08 0.01 -0.05 -0.02 -0.061 
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Q = 0.95,a; = 1, 
10.0934 9.5821 9.0970 8.6364 8.2027 
9.5821 10.0934 9.5820 9.0970 8.6364 

R = 9.0970 9.5820 10.0934 8.5820 9.0970 
8.6364 9.0970 9.5820 10.0934 9.5820 I 8.2027 8.6364 9.0970 9.5820 10.0934 

These results validate the predicted behavior of (24), (33), 
(40), and (47). Specifically, it appears that as long as me is 
nulled, the MSE of an adaptive filter using the SE-LMS and 
the SS-LMS algorithms is shaped by p. This is not true for 
the LMS algorithm or the SD-LMS algorithm. Consequently, 
much better MSE performance in the presence of dc offsets 
can be attained using the SE-LMS or the SS-LMS algorithms. 
However, as mentioned earlier, the SS-LMS algorithm can 

................. -a 

SD-LMS 
0 

lo" loJ F lo4 lo3 lo2 

Fig. 5 .  
me = 0. 

diverge depending on input statistics due to gradient misalign- 
ment. Thus we conclude that the SE-LMS algorithm is the 
best choice. Table I summarizes the results presented and the 
issues discussed in this paper. 

MSE as function of pm for the four LMS based algorithm with 

VIII. CONCLUSION 

We have analyzed the performance and provided analytical 
expressions for the performance of four coefficient update 
algorithms for analog adaptive filters from an offset point of 
view. We have found that both the SE-LMS and the SS-LMS 
algorithms achieve better MSE performance when dc offsets 
are present; especially when integrator offsets, which dominate 
in a practical analog system, are unavoidable and in high 
frequency applications where simply passing the error signal 
through a gain stage to reduce the effects of dc offsets [2] is 
impractical. For the SE-LMS and the SS-LMS algorithms, it 
was shown that by minimizing me the MSE can be reduced, 
whereas this is not the case for the LMS or the SD-LMS 
algorithms. The practicality of minimizing me was briefly 
discussed. It was observed that if offsets can be controlled it is 
possible to reduce the excess MSE by having the offsets cancel 
one another (most likely impractical). Also, some comments 
were given on the possibility of algorithm divergence due to 
excessive dc offsets. 

In terms of implementation complexity the LMS algorithm 
is the most complex while the SS-LMS algorithm is the 
simplest. Between the SD-LMS algorithm and the SE-LMS 
algorithm the former is more hardware intensive as N slicers 
for the N gradient signals will be required while only 1 slicer 
would be required for the latter. 

Having lower offset sensitivity, minimal circuit complexity 
combined with the fact that the SD-LMS and the SS-LMS 
algorithms can diverge due to gradient signal misalignment 
[ 5 ] ,  it appears the SE-LMS algorithm is the best choice as an 
algorithm for practical high-frequency analog adaptive filters. 

Finally, we would like to point out that the analysis done 
here is idealized in the sense that the effects of noise, coef- 
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1 trivial multi- 
PkdtaP 

1 mtegratorhp 
1 slicer/Iilter 

TeStCpse 

1 slicerhp 
1 XOR gateltap 
1 countedtap 
1 DAUtap 
1 slicer/6lter 

input power 

no offsets 

al l  offsets 

me = 0 

algorithm 
circuit 
complexity 

convergence 

TABLE I 
RESULT SUMMARY 

t+O I for p+O 
+O 

for p + 0 

1 multiplierhap 1 slicerhp 
1 integratorhap 1 trivial multi- t 1 integratodtap 

pliedtap 

no gradient 
misalignment 

ficient leakage due to damped integrators and other analog 
circuit nonidealities were not considered. These issues are 
addressed in [lo]. 

APPENDIX A 

Here we evaluate 

E[sgn[x + m,]] = 

Considering the ith element, we obtain 

E[sgn[xi + m,i]] = -P(zi + m,i 5 0) + P(xi + m,i > 0) 
= -P(Zi 5 -m,i) + P(Zi > -m,i) 
= -Fx[-mzi] + (I - Fx[-m,a]) 

= 1 - 2Fx[-mzi] (A-2) 

where P(0)  denotes the probability operator and Fx[o] de- 
notes the cumulative distribution function. For a zero-mean 
Gaussian distribution with m,i 5 0 we have [13] 

(A-3) 

SELMS I SS-LMS 

0,’ strongly depends on p 
for p+O 

SE-LMS 

no gradient 
misalignment 1 k%ed 

where erf[u] = 5 
function in U and substituting (A-3) into (A-2) yields: 

e-” dz. Noting that erf[u] is an odd 

r 1 

E[sgn[x; + m,i]] = erf - (A-4) 

Had we taken m,i > 0, a similar result would have been 
obtained, thus (A-4) is true for all m,i. The result of (26) is 
then easily obtained from (A-4) and (A-1). 

APPENDIX B 

Here we evaluate 

E[sgn[x + m,]xT] = 

Considering the i,jth element of the above matrix, for any 
two zero-mean Gaussian variables xi, xj, with covariance 
E[zizj] = aZtaz3pi,j, using Price’s Theorem [14] we obtain: 

- r - - r  1’1 7- 
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For the case of Gaussian signals (B-2) becomes Trans. Acousr., Speech, Signal Process., vol. ASSP-29, pp. 670-678, 

d 
-E[sgn[zi + m,;]zj] 
dPi,j 

Integrating the right-hand side of (B-3) with respect to z; gives 

(B-4) 
After rearranging terms and completing the square (B-4) 
simplifies to 

June 1981. 
[6] S .  Dasgupta and C. R. Johnson Jr., “Some comments on the behavior 

of sign-sign adaptive identities,” Syst. Confr. Left., vol. 7, April 1986. 
[7] D. L. Duttweiler, “Adaptive filter performance with nonlineanties in the 

correlation multiplier,” IEEE Trans. Acoust., Speech, Signal Process., 
vol. ASSP-30, pp. 578-586, Aug. 1982. 

[8] C. R. Rohrs, C. R. Johnson, and J. D. Mills, “A stability problem in 
sign-sign adaptive algorithms,” IEEE Int. Conf: Acousr., Speech, Signal 
Process., vol. 4, pp. 2999-3001, April 1986. 

[9] T. Enomoto et al., “Integrated MOS offset error canceller for analogue 
adaptive transversal filter,” Electron. Lett., vol. 19, pp. 968-970, Nov. 
1983. 

[ lo] U. Menzi and G. S .  Moschytz, “Adaptive switched capacitor filters based 
on the LMS algorithms,” IEEE Trans. Circuits Syst. I ,  vol. 40, no. 12, 
pp. 929-942, Dec. 1993. 

[ 1 I] C.-P. J. Tzeng, “An adaptive offset cancellation technique for adaptive 
filters,” IEEE Trans. Acoust., Speech, Signal Process., vol. 389, pp. 
799-803, May 1990. 

[12] H. Qiuting, “Offset compensation scheme for analogue LMS adaptive 
filters,” Electron. Lett., vol. 28, pp. 1203-1205, June 1992. 

[ 131 A. Papoulis, Probability, Random Variables, and Stochastic Processes. 
New York: McGraw-Hill, 1991, third ed. 

[I41 R. Price, “A useful theorem for nonlinear devices having Gaussian 
inputs,” IRE Trans. Inform. Theory, vol. IT-4, pp. 69-72, June 1958. 

(151 A. Shoval, D. A. Johns, and W. M. Snelgrove, “Median-based offset 
cancellation circuit technique,” in Proc. IEEE Syinp. Circuits Syst., vol. 
4, pp. 2033-2036, May 1992. 

[ 161 H. Sari, “Algorithms d’egalisation adaptive d’un canal dispersif,” Ph.D. 
dissertation, Ecole Nationale Superieure des Telecommunications, Paris, 
Oct. 1980. 

[171 MATLAB, Matrrx Laboratory, The MathWorkr, Inc., Natwick, MA, 
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(B-5) 
Solving for (B-5) yields 

d 
-E[sgn[z, + mz2]z,] = fg,, e-m”,/2ufz. (B-6) 
dP%, 7l 

E[sgn[x, +mzzIz,l = p g z , e - m : . l  7l 2 4 ,  1’‘ d&. 03-71 

Solving this trivial integral and substituting for P , , ~  results in 

Integrating both sides of (B-6) with respect to p2,, gives 
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