
Distortion Analysis of Weakly Nonlinear Filters

Using Volterra Series

by

James A. Cherry

A thesis submitted to the

Faculty of Graduate Studies and Research

in partial ful�llment of the requirements

for the degree of

Master of Engineering

Ottawa-Carleton Institute for Electrical Engineering,

Department of Electronics,

Carleton University,

Ottawa, Ontario, Canada

December 6, 1994

c James A. Cherry 1994



The undersigned recommend to the Faculty of Graduate

Studies and Research acceptance of the thesis

Distortion Analysis of Weakly Nonlinear Filters Using Volterra Series

submitted by James A. Cherry

in partial ful�lment of the requirements for

the degree of Master of Engineering.

Thesis Supervisor

Chairman,

Department of Electronics

Ottawa-Carleton Institute for Electrical Engineering,

Department of Electronics

Faculty of Engineering

Carleton University

December 6, 1994



Acknowledgements

Thanks to Arthur Castonguay for his suggestions on how best to edit and typeset

this thesis.

Thanks to Luc Lussier for laying out test boards for me on short notice, and to

Norm Filiol and John Long for discussions on how to use a network analyzer.

Thanks to the Natural Sciences and Engineering Research Council and to the

Department of Electronics at Carleton for their �nancial assistance. They made the

completion of this work possible.

Most of all, thanks to my supervisor, Martin Snelgrove, for motivation when I

needed it most, for talking to me no matter how little time he had, and for all his

thoughtful comments and advice.



Abstract

An analysis of weakly nonlinear band pass �lters using Volterra series is presented.

The Volterra transfer functions for a typical Gm-C biquad are derived analytically

and used to quantify and unify the distortion that arises with multiple input sinu-

soids, speci�cally gain compression, desensitization, and intermodulation distortion.

A feedback structure that can reduce distortion is analyzed algebraically, and practi-

cal examples of the structure are simulated and their distortion terms extracted using

a novel technique. The latter is applied to an actual Gm-C biquad in the laboratory

and measured performance agrees with that predicted by the Volterra analysis.
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List of Symbols

dB in this thesis: Unless otherwise stated, a quantity x in dB is de�ned as

20 log10 x.

Here is an explanation of some of the notation used in this thesis.

X

(v;l;n)

Sum over all partitions v of n into l parts

P0

N Sum of non-identical products of a partition

X

n!

(x(1); � � � ; x(n)) Sum over all permutations of subscripts i of xi

_x First time derivative of x

�x Second time derivative of x

j[x]j exp(jxt)

Here is a list of symbols and their de�nitions.

� Du�ng equation nonlinearity parameter

a Du�ng equation output magnitude

a1; a2; a3 Coe�cients of example nonlinear system

a+ jb M1(fa), Volterra linear transfer function at fa

A0 Gain at �lter center frequency f0

ix
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A0A Gain at center frequency of desired tone �lter in 3�lt

A0B; A0C Gain at center frequency of interferer �lters in 3�lt

A1 Magnitude of measured Volterra M1 term

A3 Magnitude of measured Volterra M3 term

A(s) Linear transfer function of desired tone �lter in 3�lt

B1 Magnitude in dB of measured Volterra M1 term

B3 Magnitude in dB of measured Volterra M3 term

B(s) Linear transfer function of one intererer �lter in 3�lt

c+ jd M3(fa; fa;�fa), Volterra third-order transfer function for com-

pression

C1 Capacitor at output of TA 1 in general biquad �lter

C2 Capacitor at output of TA 2 in general biquad �lter

C(s) Linear transfer function of other interferer �lter in 3�lt

CS% Percentage channel separation, de�ned in (4.45)

� Du�ng equation small parameter, x4.4.3

� Filter nonlinearity coe�cient, everywhere but x4.4.3

�i Coe�cient of third-order term of TA i in general biquad �lter

�1 Coe�cient of third-order term of TA 1 in general biquad �lter

�2 Coe�cient of third-order term of TA 2 in general biquad �lter
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e+ jf M3(fa; fb;�fb), Volterra third-order transfer function for desen-

sitization

E(t) Du�ng equation forcing term

�(t) Impulse response of �lter in feedback path of 3�lt

�(f) Linear transfer function of �lter in feedback path of 3�lt

4f Channel separation in Hz

4fmin Minimum channel separation in Hz

f0 Filter center frequency in Hz

f0A Center frequency in Hz of desired tone �lter in 3�lt

f0B; f0C Center frequency in Hz of interferer �lters in 3�lt

f1; f2 Input signal frequencies, x2.1.2

f1(v) Current-voltage characteristic of TA 1 in general biquad �lter

f2(v) Current-voltage characteristic of TA 2 in general biquad �lter

f Frequency in Hz

fa Desired tone frequency in Hz

fb; fc Interferer frequencies in Hz

fi(v) Current-voltage characteristic of TA i in general biquad �lter

 Du�ng equation output phase

gmi Transconductance on TA i in general biquad �lter

gm1 Transconductance on TA 1 in general biquad �lter
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gm2 Transconductance on TA 2 in general biquad �lter

gn nth Volterra kernel of an entire system

g + jh M3(fb; fb;�fc), Volterra third-order transfer function for inter-

modulation

Gm12 Transconductance of one f0-tuning TA in [Shov93] �lter

Gm21 Transconductance of other f0-tuning TA in [Shov93] �lter

Gm22 Transconductance of Q-tuning TA in [Shov93] �lter

Gmi Transconductance of A0-tuning TA in [Shov93] �lter

Gn nth Volterra transfer function of an entire system

Gn nth Volterra transfer function of 3�lt

h(t) Impulse response of a system

HAn nth Volterra transfer function from input to good guy �lter output

in 3�lt

HBn;HCn nth Volterra transfer function from input to interferer �lter out-

puts in 3�lt

i Current

IP3 Input third-order intercept point

j
p
�1

k Du�ng equation input amplitude parameter, x4.4.3

k Feedback coe�cient in 3�lt

Kn nth Volterra transfer function from input to error signal in 3�lt
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� Du�ng equation damping parameter

Mn nth Volterra transfer function in general biquad �lter

MAn nth Volterra transfer function in desired tone �lter in 3�lt

MBn;MCn nth Volterra transfer function in interferer �lters in 3�lt

N Number of partitions of n into l parts

NL% Percentage nonlinearity, de�ned in (4.44)

Q Filter quality factor

Qn Transistor in schematic

R1 Damping resistor in general biquad �lter

� Du�ng equation detuning parameter

s Complex frequency

t Time

T0 Constant time shift

Tc Compression termM3(fa; fa;�fa)

Td; Td1; Td2 Desensitization termsM3(fa; fb;�fb) and M3(fa; fc;�fc)

Ti; Ti1; Ti2 Intermodulation termsM3(fb; fb;�fc) and M3(�fa; fb; fc)

�1 Phase angle of measured Volterra M1 term

�3 Phase angle of measured Volterra M3 term

u Du�ng equation output
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v Voltage

vi; v1; v2 Time-domain signals at nodes of general biquad �lter

v1; v2; v3 Partitions of n into l parts

Vi; V1; V2 Frequency-domain signals at nodes of general biquad �lter

V1; V2 Input signal amplitudes, x2.1.2

V1 Output amplitude of �rst harmonic, Chapter 6

V3 Output amplitude of third harmonic, Chapter 6

V5 Output amplitude of �fth harmonic, Chapter 6

Va Amplitude of desired tone signal

Va1;2;3;4 Amplitudes of desired tone signal for Volterra coe�cient extrac-

tion

Vb; Vc Amplitude of interferer signals

Vb1;2;3 Amplitudes of interferer signal for Volterra coe�cient extraction

Vc1 Input voltage which causes 1dB compression at output

Vin Du�ng equation input voltage

Vout1;2;3;4 Amplitudes of output signals for Volterra coe�cient extraction

VRout;1;2 Real part of output signals for Volterra coe�cient extraction

VIout;1;2 Imaginary part of output signals for Volterra coe�cient extraction

Vx Input signal amplitude, Chapter 6

! Frequency in
rad

s
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 Du�ng equation input frequency in
rad

s

!0 Filter center frequency in
rad

s

!0A Center frequency in
rad

s
of desired tone �lter in 3�lt

!0B; !0C Center frequency in
rad

s
of interferer �lters in 3�lt

!a Desired tone frequency in
rad

s

w(t) Time-domain error signal in 3�lt

W (s) Linear frequency-domain error signal in 3�lt

x(t) Time-domain input to �lter or system

X(f) Linear frequency-domain input to �lter or system

y(t) Time-domain output of �lter or system

yA(t) Time-domain output of desired tone �lter in 3�lt

yB(t); yC(t) Time-domain output of interferer �lters in 3�lt

yn nth Volterra kernel of system output

Y (f) Linear frequency-domain output of �lter or system

YA(s) Linear frequency-domain output of desired tone �lter in 3�lt

YB(s); YC(s) Linear frequency-domain output of interferer �lters in 3�lt

z(t) Time-domain fed-back signal in 3�lt



Chapter 1

Introduction

1.1 Linear and Nonlinear Systems

The concept of linear and nonlinear systems will certainly be familiar to the engineer.

However, most will be more familiar with linear systems because these systems are

easier to understand. They are amenable to straightforward algebraic manipulation,

and hence can be solved and grasped more easily using any number of well-tried and

well-understood techniques, such as matrix algebra and Laplace transforms.

Unfortunately, or perhaps fortunately, nothing in nature is perfectly linear un-

der all conditions. Rather than throwing in the towel the engineer will frequently

disregard nonlinearity if it can be gotten away with and \linearize" a problem so

that it may be more easily understood and solved. Often, this approach succeeds:

small-signal circuit analysis is a linearization technique that has been used with great

success for years.

Linearization, however, is not the panacea of analysis. Some phenomena arise

precisely because of nonlinearity and linear analysis o�ers little or no insight in such

cases. Two such phenomena are injection locking [Vdp34] and chaos [IEEE87], and

while linearization belies their very existence, both are demonstrable beyond doubt

in the laboratory.

1
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In the world of radio receivers there exist many phenomena that arise from non-

linearity, some desired, some not. Among the undesired are gain compression and

intermodulation. The former occurs as input signals become too large for an ampli-

�er or �lter, which results in a loss of gain; the latter occurs when multiple signals

interact to produce intermodulation products. It is these e�ects that this thesis con-

siders.

In radio receivers, compression is usually associated with ampli�ers, although it

occurs in �lters too. And both ampli�ers and �lters with slight nonlinearities can

cause intermodulation distortion. These two e�ects are usually treated as di�erent

things, but they arise from the same problem: the unintentional yet unavoidably-

present nonlinearities in circuit components. It transpires that these unintentional

nonlinearities are quite \weak" under many conditions.

A well-known tool for characterizing weakly-nonlinear systems is the so-called

Volterra series approach. This thesis applies Volterra series to the analysis of weakly-

nonlinear band pass �lters in radio receivers. It shows that compression and intermod-

ulation, which are both generally classi�able as \distortion" e�ects, can be treated

with the same formulae. It also demonstrates that Volterra series are ideally suited

to the analysis of distortion in radio �ltering circuits.

1.2 Contributions

This thesis contributes the following to the study of weakly nonlinear �lters:

1. It gives explicit equations for Volterra transfer functions involving products of

integrals such as [
R
y]2[

R
y
3]. To the author's knowledge, such expressions have

not been presented explicitly in the literature before.

2. It derives an explicit formula for the Volterra transfer functions of cascaded

nonlinear systems. Such a formula is implied in [Bed71], equation (56) and

partly derived in the time domain in [Rugh81] chapter 1 equation (46), but the
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author has not seen it stated as compactly or generally in the frequency domain

as it is here.

3. It analyzes an architecture that can greatly reduce the adjacent-channel in-

terference that arises from nonlinearity in �lters. Such a structure has been

proposed before but has not been analyzed in this manner.

4. It describes a new technique for extracting Volterra transfer function terms

from numerical simulations. Past e�orts in this area typically cannot deal with

gain compression and desensitization terms since they are only concerned with

�nding the magnitudes of the higher-order transfer functions, and this has been

overcome here.

5. It applies the extraction method to the output of a SPICE simulation of a real

circuit. More importantly, it demonstrates and automates the extraction of

distortion values on an actual circuit in the laboratory using a network analyzer.

This is the �rst time the author has seen a method for measuring the Volterra

kernels for overlapping output tones.

6. It formalizes gain compression and expansion for a �lter and uni�es them, and

uses the results to predict the 1dB-compression point for a real circuit at various

frequencies.

7. It demonstrates that Volterra series are well-suited for calculating distortion

in RF �ltering problems. Moreover, it gives good evidence that if a �lter is

a second-order biquadratic BPF, the distortion results are independent of the

exact implementation of the �lter. All that matters is the transfer function

itself.
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1.3 Organization

Chapter 2 contrasts linear and nonlinear systems, examines the output character-

istics of both types of systems, illustrates the typical front-end of a radio receiver, and

discusses nonlinearity in circuit components and the problems introduced by it, such

as gain compression and intermodulation. It culminates by proving the infeasibility

of a circuit from the literature for AMPS cellular phones.

Chapter 3 introduces nonlinear systems with memory and Volterra series, explains

how to derive the Volterra series representation from system equations, lists the for-

mulae for the spectrum of the output when the input is sinusoidal, and discusses why

Volterra series are good and circumstances under which they are valid.

Chapter 4 analyzes a simple biquadratic band pass �lter, deriving its Volterra

transfer functions explicitly and comparing their predictions of system performance

to those of SPICE and a Runge-Kutta numerical di�erential equation solver for one-

and two-tone inputs and characterizing general trends for three-tone inputs. It also

explores the e�ect of strong nonlinearity by investigating the forced Du�ng equation.

Chapter 5 proposes a feedback structure that can reduce the distortion produced

by a weakly nonlinear �lter. The Volterra transfer functions for the new structure are

determined algebraically, and a method for numerically extracting distortion com-

ponents from simulations is proposed and demonstrated both with the Runge-Kutta

program and with SPICE on a realistic �lter. It concludes with a discussion of some

general properties of the feedback structure.

Chapter 6 applies the numerical extraction technique to an integrated circuit in

the laboratory. It uses a network analyzer, a signal source, and a BASIC program to

automate the extraction of linear gain, compression, and desensitization values. Gain
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compression and expansion for a �lter are formalized and measured, and the general

trends mentioned in Chapter 4 are con�rmed.

Chapter 7 draws conclusions about this work and makes recommendations for

future work.



Chapter 2

Problem Background

2.1 System Classi�cation

Following is an exceedingly brief discussion of linear and nonlinear systems. It is

certainly not intended to be all-encompassing or rigorous; many, many books have

been written on both subjects, [Lath74] on linear systems, [Chua69] on nonlinear

systems, to name just two. The intention is to provide an overview the key concepts

that will be important in this thesis.

2.1.1 Linear, Time-Invariant Versus Nonlinear

By de�nition, a system is linear if and only if the principle of superposition holds.

Formally, suppose a system takes an input x(t) and produces an output y(t) via some

function f ,

y(t) = f [x(t)] (2.1)

where t is an independent variable, usually time. Suppose further that two inputs

x1(t) and x2(t) produce outputs y1(t) and y2(t), respectively:

y1(t) = f [x1(t)] (2.2)

y2(t) = f [x2(t)] (2.3)

6



cJames A. Cherry 1994 7

Then, if the system is linear, an input ax1(t)+ bx2(t) will produce an output ay1(t)+

by2(t), where a and b are scalars. That is,

f [ax1(t) + bx2(t)] = ay1(t) + by2(t) (2.4)

for a linear system. A system is nonlinear if and only if it is not linear.

A system is time-invariant if a time shift in the input is reproduced at the output.

Suppose

y(t) = f [x(t)] (2.5)

Let T0 be a constant. Then, for all values of T0,

f [x(t� T0)] = y(t� T0) (2.6)

in a time-invariant system. A system is time-varying if it is not time-invariant.

Many real systems are both linear and time-invariant, and they are often denoted

\LTI systems" for short.

2.1.2 Consequences

An important feature of LTI systems is this: the output spectrum can only have tones

at the same frequencies as the input spectrum. A formal proof of this assertion will

not be given, but it is not di�cult to see why it is true.

First, it can be shown [Pap80] that an LTI system satis�es the familiar convolution

formula

y(t) =

Z t

0
x(� )h(t� � )d� =

Z t

0
x(t� � )h(� )d� (2.7)

where y(t) is the output, x(t) the input, and h(t) the impulse response. Next, if x(t)

is an exponential eat, we can see in (2.7)

y(t) =

Z t

0
ea(t��)h(� )d�

= eat
Z t

0
e�a�h(� )d�
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That is, the exponent at is not changed by convolution because the integral evaluates

to a constant. Lastly, any sinusoidal signal is a sum of exponentials ejwt and convo-

lution doesn't alter the exponents jwt, i.e., the frequency. We may conclude that in

an LTI system, no new tones can appear at the output.

The same cannot be said for a nonlinear system. Consider a nonlinear (though

time-invariant) system with a square and a cubic nonlinearity. Let its de�ning equa-

tion be

y(t) = a1x(t) + a2[x(t)]
2
+ a3[x(t)]

3
(2.8)

If the input is a sum of two sinusoids at frequencies f1 and f2,

x(t) = V1 sin(2�f1t) + V2 sin(2�f2t) (2.9)

its spectrum will be as shown in Figure 2.1, top [Wein80]. The spectrum in the

Figure is for positive frequencies only; the spectrum for negative frequencies is the

mirror image of the one depicted. By substituting (2.9) in (2.8) and making use of

trigonometric identities such as

sin
2 x =

1

2

�
1

2

cos 2x

sin
3 x =

3

4

sin x�
1

4

sin 3x

sinx sin y =

1

2

cos(x� y)�
1

2

cos(x+ y) (2.10)

sin x cos y =

1

2

sin(x+ y) +
1

2

sin(x� y)

cos x cos y =

1

2

cos(x+ y) +
1

2

cos(x� y)

we will arrive at the output spectrum shown in Figure 2.1, bottom. The two input

tones have become thirteen tones at the output. The numbers above each line give the

order of the tone, or, the number of terms that must be multiplied to give a tone at

that frequency. It can be seen that when there are m input tones f1; : : : ; fm, a nonlin-

earity of order n produces a tone at all possible sums of n of +f1;�f1; : : : ;+fm;�fm.
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Figure 2.1: Input (top) and output (bottom) tones for a nonlinear system.

The reader will see that in the output spectrum, at the two input frequencies f1

and f2, there are contributors of order one and order three. We will be returning to

this fact shortly.

2.2 Radio Receivers

2.2.1 Architecture and Functional Blocks

In 1918, E. H. Armstrong �rst perfected the superheterodyne radio receiver, and since

then almost every radio receiver has been built the same way. A typical front-end

for such a radio receiver is shown in Figure 2.2. The main functional blocks are as

follows.

Band pass �lter (BPF) This �lter usually provides broad frequency selectivity.

In many systems (such as those for receiving commercial FM radio broadcasts) it is

tunable; its center frequency is set to the that of the desired radio-frequency (RF)
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to IF
stages

BPF LNA

mixer

antenna

LO

Figure 2.2: Typical front-end for superheterodyne radio receiver.

signal. Selection of the speci�c radio channel, which requires narrower �ltering, is

often di�cult to accomplish at this stage because of the high frequency and the

tunable nature of the �lter, and it is usually done at the intermediate frequency (IF).

Low-noise ampli�er (LNA) The weakest radio signals are not much stronger

than thermal noise, and the LNA must both amplify weak signals and not degrade

their signal-to-noise ratio (SNR) excessively. Excessive degradation leads to poor

reception.

Local oscillator (LO) This tunable oscillator is set to the frequency given by the

sum of the frequencies of the desired RF signal and the IF.

Mixer The mixer \heterodynes" (that is, multiplies) the LO signal and the desired

RF signal, the e�ect of which is to make two copies of the signal: one at the IF

and one at a much higher frequency. The mixer output is usually passed through

a narrow BPF to attenuate adjacent channels and keep only the desired signal; the

high-frequency copy is �ltered out simultaneously.



cJames A. Cherry 1994 11

2.2.2 Interference

The purpose of a radio receiver is to pick up a particular signal while ignoring all other

signals. The radio spectrum is �lled with signals that have frequencies as low as 9KHz

for marine communications to frequencies as high as 300GHz for some satellites. A

large amount of power also appears at 60Hz, the electrical power frequency in North

America. The radio receiver must therefore select the desired signal out of a host of

\interfering" signals.

It is possible that there will be large signals at a frequency close to the desired

signal frequency. For example, commercial FM radio [Cook68] has channels allocated

between 87:9MHz and 107:9MHz in 200kHz-steps; the desired signal could be at

105:9MHz while there might be a station only 200kHz away at 106:1MHz. Since the

band pass �lter is only broadly selective it will not usually be capable of attenuating

such adjacent-channel interferers much.

To combat the problem of adjacent-channel interferers, frequency allocation is

usually performed. The CRTC in Canada and the FCC in the United States assign

and regulate frequencies throughout the spectrum. In FM radio, for example, trans-

mitters within the same geographic region must be separated by at least 800kHz,

which e�ectively prevents the most serious adjacent-channel interference that would

arise were two stations to be adjacent in frequency, 200kHz apart, and in close phys-

ical proximity. Allocation is not completely e�ective because transmitters are not

ideal; they transmit small signals at harmonics of the transmission frequency as well

as broad-band noise.

Signals become less problematic as we move further away from the desired signal

frequency because the band pass �lter attenuation becomes stronger. Only large

signals can cause signi�cant interference. Signals near the mixer's so-called \image

frequency" can be problematic.
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fc fb fa

f∆ f∆

Figure 2.3: Example input spectrum.

2.2.3 Distortion

The discussion so far has been only concerned with linear response of the circuits

used to build the receiver. When the circuits are nonlinear, interferers result in

\distortion". We have already seen an example of distortion in Figure 2.1: at the

input frequencies f1 and f2, the output spectrum has contributors of orders one and

three. The order one terms are the desired linear output terms while the order

three terms which coincide with the linear terms are distortion terms. These are

invariably bad: let us �rst de�ne the nomenclature connected with distortion and

then demonstrate numerically why it is bad.

Suppose that a circuit in a radio receiver has an input-output relation like that

in (2.8) with a square and cubic nonlinearity. Furthermore, suppose we are trying

to receive a signal at a frequency fa of amplitude Va (the \desired signal") and that

there are two interfering signals at fb = fa�4f and fc = fa� 24f of amplitudes Vb

and Vc (the \interferers"). The input spectrum will then be as shown in Figure 2.3.

The input equation will be

x(t) = Va sin(2�fat) + Vb sin(2�fbt) + Vc sin(2�fct) (2.11)
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Substituting (2.11) in (2.8) and simplifying using (2.10) we obtain for the output

y(t) = a1Va sin(2�fat) order 1, due to fa

+
3a3V

3
a

4
sin(2�fat) order 3, due to fa + fa � fa

+
3a3VaV

2

b

2
sin(2�fat) order 3, due to fa + fb � fb

+
3a3VaV

2
c

2
sin(2�fat) order 3, due to fa + fc � fc

+
3a3V

2

b
Vc

4
sin(2�fat) order 3, due to fb + fb � fc

+ � � � terms at other frequencies

(2.12)

The �ve terms in (2.12) comprise a complete list of the tones that appear at the

desired signal frequency fa. They can be classi�ed as follows.

Linear gain The �rst term corresponds to the linear gain, a1, that the tone at fa

experiences. This term is usually the one the circuit was designed to produce. The

other four terms are all due to the undesired yet still present third-order nonlinearity.

Gain compression/Gain expansion The second term tells how the gain varies as

a function of input amplitude. In a linear receiver, the gain remains constant for any

input amplitude, but for a nonlinear receiver, the gain changes as the input becomes

larger. The gain ultimately becomes smaller, and this is termed gain compression,

but in some cases, the gain increases slightly �rst, and this is gain expansion. Gain

compression can be observed even if fa is the only tone in x(t).

Desensitization The third and fourth terms result from the adjacent signals fb

and fc interacting with the desired signal fa. Consider an experiment where the

amplitude Va is held constant and the amplitude Vb is slowly increased. In a linear

system, the gain at fa will be una�ected by Vb, but in this nonlinear system, the gain

at fa will eventually change. It almost invariably decreases, and this lowering in gain

is called desensitization.
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Intermodulation In general, intermodulation refers to the interaction of tones

through a multiplicative e�ect. In a broad sense, all the tones in Figure 2.1 that

are not at f1 and f2 are a result of intermodulation and some might refer to all the

terms of order three in (2.12) as intermodulation terms. In this thesis, the phrase

\intermodulation term" will be applied to any term that is not a compression or a

desensitization term. Thus, only the �fth term of (2.12) would be denoted an inter-

modulation term.

2.2.4 Quanti�cation of Interference E�ects

The severity of the distortion introduced by the third-order terms depends both on the

strength of the third-order nonlinearity and the magnitudes of the adjacent signals.

In the North American cellular phone (\AMPS") environment, adjacent channels are

30kHz apart, and a signal two channels away can be as much as 60dB or 80dB stronger

than the desired signal [Fish79, Rap94]. Even tiny nonlinearities in the base station

BPF or LNA can swamp the desired signal as we shall now demonstrate.

We will use a circuit from the literature, [Mey94]. The circuit is an LNA and a

mixer integrated on silicon and designed for operation at around 900MHz. The LNA

is designed to be linear and has a linear gain of about 16dB at 900MHz. Of course,

nonlinearity is unavoidably present in the LNA and a quanti�cation of it can be found

from the quoted input third-order intercept value of IP3 = �10dBm into Rs = 50
.

To measure IP3, a graph such as the one in Figure 2.4 is drawn. A single tone of

frequency fa and amplitude Va is applied to the input and the amplitude of the output

tone is plotted as a function of Va (the � on the graph). Next, two equal-amplitude

tones are applied at fa and fa + � and the amplitude of the output tone at fa + 2�

is plotted (the � on the graph). Here, � � 0 so that the measurement approximately

characterizes the second term of (2.12), the compression term. As Va increases, both

lines deviate from linear so they are linearly extrapolated. The x-coordinate of their

intersection point is the value of IP3.
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Figure 2.4: Example graph for IP3 measurement.

Let us assume the LNA input-output relation is given by (2.8), repeated here for

convenience:

y(t) = a1x(t) + a2[x(t)]
2
+ a3[x(t)]

3
(2.13)

In an actual circuit, the (a1; a2; a3) values will depend on frequency but we will ignore

that for the moment. We can calculate a1 and a3 as follows. First, for an input of

amplitude Va, the linear output amplitude is a1Va from (2.12). The linear gain is

given as 16dB, so

Output amplitude

Input amplitude

= 16dB

a1Va

Va
= 10

16

20

a1 = 6:31

Second, at IP3, i.e., at Va = �10dBm = 100mV, the compression term and linear
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Table 2.1: Distortion components in [Mey94] �lter.

Component Vb = 1mV Vb = 1mV Vb = 10mV

Vc = 1mV, Vc = 10mV, Vc = 10mV,

Linear gain 63:1�V 63:1�V 63:1�V

Gain compression 0:63pV 0:63pV 0:63pV

Desensitization from fb 12:6nV 12:6nV 1:26�V

Desensitization from fc 12:6nV 12:6nV 1:26�V

Intermodulation 0:63�V 6:31�V 631�V

term have equal amplitudes. So, from (2.12),

a1Va =

3a3V
3
a

4

for Va = 100mV

a3 =

4a1

3V 2
a

=

4 � 6:31

3(0:1)2

= 841

So, let us use these a1 and a3 in (2.12) to calculate the amplitudes of all distortion

terms. Assuming a small amplitude of Va = 10�V for the desired signal, Table 2.1

shows the output amplitudes for the �ve terms in (2.12) for various interferer ampli-

tudes.

Even in the case where the adjacent signals are only 40dB and 60dB stronger than

the desired signal, already the intermodulation term is 10% of the linear term, as can

be seen in the second column of the Table. When both signals are 60dB stronger (the

third column), the linear term is dominated by the intermodulation term. Under

worst-case conditions, then, this circuit would be unsuitable for cellular telephone

applications in North America. (The problem is the low IP3 value of �10dBm; better

circuits can improve this value to almost +20dBm, in which case a3 and the inter-
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modulation component both drop by three orders of magnitude and the worst-case

performance becomes acceptable.)

We now see why distortion is bad: it can lead to the desired signal being swamped

by the interferers and hence rendering it unrecoverable | completely defeating the

purpose of a radio receiver. This example has been investigating nonlinearity in the

LNA, but nonlinearity in the BPF can be just as detrimental.

2.2.5 Why Volterra Series?

The previous example may seem more complicated than necessary. After all, any

radio engineer worth his or her salt knows how to read an IP3 graph and can calcu-

late directly what limits signals should not surpass without resorting to the analysis

presented here.

It transpires that Volterra series are an attractive way of generalizing distortion

calculations. After their introduction in the next chapter, a case is made for their

use.



Chapter 3

Volterra Series

3.1 Introduction to Volterra Series

3.1.1 Background

The Spanish mathematician Vito Volterra �rst introduced the notion of what is now

known as a Volterra series in his \Theory of Functionals" [Vol59]. The �rst major

application of Volterra's work to nonlinear circuit analysis was done by the mathe-

matician Norbert Wiener at M.I.T., who used them in a general way to analyze a

number of problems including the spectrum of an FM system with a Gaussian noise

input [Wien58]. Since then, Volterra series have found a great deal of use in calculat-

ing small, but nevertheless troublesome, distortion terms in transistor ampli�ers and

other systems [Nar70, Buss74].

In the next section, a brief introduction to the concept of Volterra series and the

associated terminology is given. Discussion of some of the conditions under which

Volterra series may be applied will be postponed until x3.4.

18



cJames A. Cherry 1994 19

3.1.2 Volterra Series Representation

A linear, causal system with memory can be described by the convolution represen-

tation [Rugh81]

y(t) =
Z
1

�1

h(�)x(t� �)d� (3.1)

where x(t) is the input, y(t) the output, and h(t) the impulse response of the system.

A nonlinear system without memory can be described with a Taylor series

y(t) =
1X
n=1

an[x(t)]
n (3.2)

where, again, x(t) is the input and y(t) the output. The an are the Taylor series

coe�cients.

A Volterra series combines the above two representations to describe a nonlinear

system with memory

y(t) =
1X
n=1

1

n!

Z
1

�1

du1 � � �
Z
1

�1

dungn(u1; : : : ; un)
nY

r=1

x(t� ur) (3.3)

=
1

1!

Z
1

�1

du1g1(u1)x(t� u1) (3.4)

+
1

2!

Z
1

�1

du1

Z
1

�1

du2g2(u1; u2)x(t� u1)x(t� u2) (3.5)

+
1

3!

Z
1

�1

du1

Z
1

�1

du2

Z
1

�1

du3g3(u1; u2; u3)x(t� u1)x(t� u2)x(t� u3) (3.6)

+ : : :

x(t) is the input, y(t) is the output, and the gn(u1; : : : ; un) are called the Volterra

kernels of the system or simply the kernels [Bed71]. The ui are time variables and

are labeled ui instead of ti to distinguish them better from t. For n = 1, g1(u1) will

be recognized as the familiar impulse response (h(t) in equation (3.1)); thus, gn for

n > 1 are rather like \higher-order impulse responses." These serve to characterize

the various orders of nonlinearity [Bed71]. The �rst few terms of (3.3) have been

explicitly written out; (3.4) is the familiar convolution integral (3.1), and (3.5) and

(3.6) may be thought of as two-fold and three-fold convolution. (3.3) is an in�nite

sum of n-fold convolution integrals.
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The leading
1

n!
is omitted by almost all authors except Bedrosian and Rice [Bed71]

(see, for example, [Rugh81] chap. 1 eq. (36), [Buss74] eq. (2.3), [Chua82] eq. (1.1)).

It is included in this thesis because it simpli�es many calculations. The underlying

assumption is that the kernels gn are symmetric, which means that gn(u1; : : : ; un)

must have the same value regardless of the permutation of u1; : : : ; un. If a system has

an unsymmetric kernel n, Wiener showed [Wien58] that it may be symmetrized by

permuting the subscripts on the ti in all possible ways and then taking gn to be
1

n!
times the sum of all such n. The rest of this work assumes the kernels are symmetric.

(In point of fact, if Chua had used symmetric kernels in [Chua82], his equations (2.16)

and (4.12) would have become much shorter.)

Just as (3.3) is analogous to n-fold convolution, there exist n-fold analogies to

Laplace and Fourier transforms. These are de�ned by

Gn(f1; : : : ; fn) =
Z
1

�1

du1 � � �
Z
1

�1

dungn(u1; : : : ; un)e
�s1u1 � � � e�snun (3.7)

and

Gn(f1; : : : ; fn) =
Z
1

�1

du1 � � �
Z
1

�1

dungn(u1; : : : ; un)e
�j!1u1 � � � e�j!nun (3.8)

where !i = 2�fi, si = j!i. It is clear that G1(s1) is the familiar linear transfer func-

tion, and thus Gn in general is referred to as the nth-order transfer function. These

frequency-domain representations Gn are useful because often they are much simpler

to calculate than the sometimes prohibitively-complex time-domain representations

gn, and because radio problems are often approached in the frequency domain. From

the de�nitions (3.7) and (3.8), it follows that if gn(u1; : : : ; un) is a symmetric func-

tion of the ui, then Gn(f1; : : : ; fn) is a symmetric function of the fi. The traditional

frequency-domain input-output representation now becomes [Bed71]

Y (f) =
1

1!
G1(f)X(f)

+
1

2!

Z
1

�1

df1G2(f1; f � f1)X(f1)X(f � f1)
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+
1

3!

Z
1

�1

df1

Z
1

�1

df2G3(f1; f2; f � f1 � f2)X(f1)X(f2)X(f � f1 � f2)

+ � � � (3.9)

The term \kernel" will sometimes be used to describe either gn or Gn. Although

this is technically incorrect, the author feels it will be clear what is meant.

3.2 Determination of the Kernels

When an explicit equation relating the input x(t) to the system output y(t) is known,

the techniques below may be used to determine the Volterra kernels Gn or gn. Prac-

tical measurement techniques (i.e., those that can be used in the laboratory to char-

acterize gn for an actual circuit) are not considered here and will be discussed in

Chapter 6.

3.2.1 The Harmonic Input Method

This method is for determining the kernels Gn in the frequency domain. When the

input is

x(t) = exp(j!1t) + : : :+ exp(j!nt) (3.10)

where !i = 2�fi; i = 1; : : : ; n, and the !i are incommensurable, then

Gn(f1; : : : ; fn) = fcoe�cient of exp[j(!1 + : : :+ !n)t] in (3.3)g (3.11)

A formal proof is provided in Appendix A.

Thus, if we assume

x(t) = exp(j!1t)

y(t) =
1X
k=1

ck exp(jk!1t)
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then G1(f1) is equal to c1. Similarly, if we assume

x(t) = exp(j!1t) + exp(j!2t)

y(t) =
1X
k=0

1X
l=0

ckl exp(j(k!1 + l!2)t)

then G2(f1; f2) = c11. Also, we have that c00 = 0, c10 = G1(f1), and c01 = G1(f2).

Similar relations hold true when x(t) is composed of more than two terms.

A nice example of the harmonic input method is to apply it to a system where

y(t) = x(t) + �[ _x(t)]2�x(t) (3.12)

This equation arises in some forms of the quasi-static approximation to �ltered FM

[Bed71]. Let us �nd the Volterra kernelsGn for this system. First, let x(t) = exp(j!1t)

and substitute this into (3.12).

y(t) = exp(j!1t) + �
h
(j!1)

2 exp(2j!1t)
i
(j!1)

2 exp(j!1t)

= exp(j!1t) + �!4
1 exp(3j!1t) (3.13)

Therefore from (3.11)

G1(f1) = fcoe� of exp(j!1t) in (3.13)g

= 1:

If x(t) = exp(j!1t) + exp(j!2t) in (3.12) now,

y(t) = exp(j!1t) + exp(j!2t) + � [j!1 exp(j!1t) + j!2 exp(j!2t)]
2

�
h
(j!1)

2 exp(j!1t) + (j!2)
2 exp(j!2t)

i

= j[!1]j+ j[!2]j+ �
n
!2
1j[2!1]j+ !1!2j[!1 + !2]j+ !2

2j[2!2]j
o

�
n
!2
1j[!1]j+ !2

2j[!2]j
o

= j[!1]j+ j[!2]j+ �
n
!4
1j[3!1]j+ !3

1!2j[2!1 + !2]j+ !2
1!

2
2j[!1 + 2!2]j

+ !2
1!

2
2j[2!1 + !2]j+ !1!

3
2j[!1 + 2!2]j+ !4

2j[3!2]j
o

(3.14)
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where j[x]j is an abbreviation for exp(jxt). There are no j[!1 + !2]j terms in (3.14),

which means

G2(f1; f2) = 0:

Lastly, letting x = j[!1]j+ j[!2]j+ j[!3]j and substituting into (3.12) gives

y(t) = j[!1]j+ j[!2]j+ j[!3]j+ � fj!1j[!1]j+ j!2j[!2]j+ j!3j[!3]jg
2

�
n
�!2

1j[!1]j � !2
2j[!2]j � !2

3j[!3]j
o

(3.15)

We can see there will be three j[!1 + !2 + !3]j terms in (3.15), which makes

G3(f1; f2; f3) = �2�!1!2(�!
2
3)� 2�!1!3(�!

2
2)� 2�!2!3(�!

2
1)

= 2�!1!2!3(!1 + !2 + !3)

For n > 3, Gn(f1; : : : ; fn) will turn out to be zero.

It is clear that the complexity of the harmonic input method increases rapidly

as n increases, but symbolic algebra programs such as Maple or Macsyma can assist

greatly in such calculations [Chua82].

3.2.2 The Direct Expansion Method

This method is for determining the kernels gn in the time domain. Here, the system

equations are manipulated until they are brought into the form of a Volterra series

(3.3), and the gn are simply \read o�" the representation. The circuit in Figure 3.1

[Rugh81], the multiplicative connection of three linear subsystems, is amenable to

analysis using the direct expansion method.

For each subsystem, the de�ning equation can be written

yi(t) =
Z
1

�1

duihi(ui)x(t� ui); i = 1; 2; 3

and so the overall transfer function is

y(t) = y1(t)y2(t)y3(t)
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3h (t)

h (t)2

h (t)1

y(t)x(t)

y (t)1

y (t)2

y (t)3

Π

Figure 3.1: Example system for direct expansion method.

=
Z
1

�1

du1h1(u1)x(t� u1)
Z
1

�1

du2h2(u2)x(t� u2)
Z
1

�1

du3h3(u3)x(t� u3)

=
Z
1

�1

du1

Z
1

�1

du2

Z
1

�1

du3h1(u1)h2(u2)h3(u3)
3Y

r=1

x(t� ur) (3.16)

Comparing (3.16) to (3.3), we see that gn(u1; : : : ; un) = 0 for all n except n = 3. At

n = 3, we must multiply (3.16) by
1

3!
in front and multiply by 3! inside the integrals:

y(t) =
1

3!

Z
1

�1

du1

Z
1

�1

du2

Z
1

�1

du33!h1(u1)h2(u2)h3(u3)
3Y

r=1

x(t� ur)

=
1

3!

Z
1

�1

du1

Z
1

�1

du2

Z
1

�1

du33(u1; u2; u3)
3Y

r=1

x(t� ur)

where

3(u1; u2; u3) = 3!h1(u1)h2(u2)h3(u3)

This kernel 3 is, in general, unsymmetric since, for example, h1(u1)h2(u2) will not

equal h1(u2)h2(u1), and thus 3(u1; u2; u3) 6= 3(u2; u1; u3). To �nd a symmetric kernel

g3, we must symmetrize 3 by permuting its arguments in 3! ways, adding the results,

and dividing by 3!. Thus, for the system of Figure 3.1,

g3(u1; u2; u3) =
1

3!

X
3!

3(u(1); u(2); u(3))

=
1

3!

X
3!

3!h1(u(1))h2(u(2))h3(u(3))

=
X
3!

h1(u(1))h2(u(2))h3(u(3))
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Experience shows that the harmonic input method is generally easier when n is

small; the direct expansion method seems to work best when the general formulae for

high n are needed.

3.2.3 Powers of Transfer Functions

Often in the system equations it transpires that we have some power of the output

variable [y(t)]l. Bedrosian and Rice [Bed71] derive the n-fold Fourier transform of gn

in the Volterra series for [y(t)]l (l a positive integer) as

G(l)
n (f1; : : : ; fn) = l!

X
(v;l;n)

X
0

NGv1(f1; : : : ; fv1)

�Gv2(fv1+1; : : : ; fv1+v2)� � � �

�Gvl(f�; : : : ; fn) (3.17)

Unfortunately the proof for this is rather involved so the interested reader is referred

to [Bed71]. In much of the literature on Volterra series, the notation for Gn for

general n varies widely and is confusing. In the author's opinion, Bedrosian and

Rice's notation in [Bed71], reproduced in (3.17) and used throughout this thesis, is

the clearest and quickest to write, particularly the
P0

N notation. An explanation of

their notation follows.

The (v; l; n) under the �rst summation sign denotes all sets vi of l natural numbers

(positive integers) such that

v1 + � � �+ vl = n; 1 � v1 � v2 � � � � � vl (3.18)

Another way to say this is, (v; l; n) represents all partitions of n into l parts. Each

member of the partition accounts for one member of the sum
P

(v;l;n).

The second sum
P0

N extends over the so-called non-identical products that arise

via permuting the subscripts of the fi. Two products are identical if either (a) the

fi arguments of Gj in one product are the same in the other product, except for a

permutation (like G2(f1; f2) and G2(f2; f1)), or (b) the ordering of the terms in the
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products is the only thing that is changed (like G1(f1)G1(f2) and G1(f2)G1(f1)). A

simple combinatorial argument gives the number of non-identical products N as

N =
n!

v1! � � � vn!r1! � � � rk!
(3.19)

where r1 is the number of equal vi in the �rst run of inequalities in

v1 � v2 � � � � � vl (3.20)

from (3.18), r2 is the number in the second run, and so on. rj = 1 if a vi is not equal

to any others. The � inside the Gvl term in (3.17) is de�ned as

� = v1 + � � �+ vl�1 + 1 = n� vl + 1: (3.21)

This all becomes much clearer with an example. To calculate G
(2)
2 (f1; f2), we see

that n = 2 and l = 2. The only partition of n into l elements is v1 = v2 = 1. Thus,

r1 = 2, and

N =
n!

v1!v2!r1!
=

2!

1!1!2!
= 1

(3.17) then becomes

G
(2)

2 (f1; f2) = 2!
X

0

1G1(f1)G1(f2)

= 2G1(f1)G1(f2)

To �nd G
(2)

3 (f1; f2; f3), where n = 3 and l = 2, again, there is only one partition of n

into l parts: v1 = 1, v2 = 2 (v1 � v2 from (3.18) must hold). So r1 = 1, r2 = 1, and

N =
n!

v1!v2!r1!r2!
=

3!

1!2!1!1!
= 3

(3.17) is thus

G
(2)
3 (f1; f2; f3) = 2!

X
0

3G1(f1)G2(f2; f3)

= 2 [G1(f1)G2(f2; f3) +G1(f2)G2(f1; f3) +G1(f3)G2(f1; f2)]

= 2 f[1][2; 3] + [2][1; 3] + [3][1; 2]g
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The last line is an abbreviated notation for the middle line. Finally, to calculate

G
(2)

4 (f1; f2; f3; f4), n = 4 and l = 2, and now there are two partitions: v11 = 1,

v12 = 3 and v21 = 2, v22 = 2. For each partition,

N1 =
n!

v11!v12!r1!r2!
=

4!

1!3!1!1!
= 4

N2 =
n!

v21!v22!r1!
=

4!

2!2!2!
= 3

giving an overall formula

G
(2)

4 (f1; f2; f3; f4) = 2!
X

0

N1
G1(f1)G3(f2; f3; f4) + 2!

X
0

N2
G2(f1; f2)G2(f3; f4)

= 2 f[1][2; 3; 4] + [2][1; 3; 4] + [3][1; 2; 4] + [4][1; 2; 3]

+ [1; 2][3; 4] + [1; 3][2; 4] + [1; 4][2; 3]g

An example of a circuit requiring use of equation (3.17) will be presented in the next

chapter.

3.3 Output Spectrum from Volterra Kernels

For several di�erent types of input signals, the spectrum of the output signal can be

expressed in terms of the nth order transfer functions. The most important types of

inputs in this thesis are sinusoids and sums of sinusoids.

If the input is a single sinusoid x(t) = Va cos(!at), !a = 2�fa, then the spectrum

of the output can be expressed as [Bed71]

y(t) =
1X
n=1

�
Va

2

�n nX
k=0

exp[j(2k � n)!at]

k!(n� k)!
Gk;n�k(fa) (3.22)

where Gk;n�k(fa) is shorthand for Gn(f1; : : : ; fn) with the �rst k of the fi equal to +fa

and the remaining n � k equal to �fa. (Technically, because the Gn are symmetric,

any k of the fi can be set to +fa and the remaining n�k to �fa. It is least confusing

to set the �rst k to +fa.) Expanding this for a few di�erent values of (2k � n) leads
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to

y(t) = [
V 2
a

2
G2(fa;�fa) + � � �]

+ej!at[
Va

2
G1(fa) +

V 3
a

16
G3(fa; fa;�fa) + � � �]

+ej2!at[
V 2
a

8
G2(fa; fa) + � � �]

+ej3!at[
V 3
a

48
G3(fa; fa; fa) + � � �] + � � �

+e�j!at[
Va

2
G1(�fa) +

V 3
a

16
G3(�fa;�fa; fa) + � � �]

+e�j2!at[
V 2
a

8
G2(�fa;�fa) + � � �]

+e�j3!at[
V 3
a

48
G3(�fa;�fa;�fa) + � � �] + � � � (3.23)

Thus, at the output, the contributors to the fundamental ej!at and the odd harmonics

are the odd Gn only. Even harmonics are made up of sums of even Gn only. In the

general term ejN!at, the fi arguments to Gn(f1; : : : ; fn) always sum to Nfa. If the

input has a phase angle � so that x(t) = Va cos(!at + �), then all the !at in (3.23)

must be replaced with !at+ �.

For a two-input sinusoid x(t) = Va cos(!at) + Vb cos(!bt), the term at frequency

N!a +M!b, N;M � 0 is given by

ej(N!a+M!b)t
1X
l=0

1X
k=0

(Va=2)
2l+N (Vb=2)

2k+M

(N + l)!l!(M + k)!k!
GN+l;l;M+k;k(fa; fb) (3.24)

where GN+l;l;M+k;k(fa; fb) is Gn(f1; : : : ; fn) with

N + 2l +M + 2k = n;

�rst N + l of fi = +fa;

next l of fi = �fa; (3.25)

next M + k of fi = +fb;

last k of fi = �fb:
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For N < 0, the signs of fa in (3.25) are reversed; for M < 0, the signs of fb are

reversed.

Lastly, for a three-tone excitation x(t) = Va cos(!at) + Vb cos(!bt) + Vc cos(!ct),

the output term at N!a +M!b + L!c, N;M;L � 0 is

ej(N!a+M!b+L!c)t
1X
l=0

1X
k=0

1X
i=0

(Va=2)
2l+N (Vb=2)

2k+M (Vc=2)
2i+L

(N + l)!l!(M + k)!k!(L+ i)!i!
GN+l;l;M+k;k;L+i;i(fa; fb; fc)

(3.26)

where GN+l;l;M+k;k;L+i;i(fa; fb; fc) is Gn(f1; : : : ; fn) with

N + 2l +M + 2k + L+ 2i = n;

�rst N + l of fi = +fa;

next l of fi = �fa;

next M + k of fi = +fb;

next k of fi = �fb;

next L + i of fi = +fc;

last i of fi = �fc:

For N < 0;M < 0; L < 0, the signs of fa; fb; fc, respectively, are reversed.

The output spectrum for several other types of input has been derived in [Bed71],

namely, Gaussian noise, sine wave plus Gaussian noise, and random pulse train.

3.4 Applicability of Volterra Series

Now that Volterra series have been introduced, we may answer the question �rst

posed in x2.2.5.

3.4.1 When Volterra Series Are Good

Volterra series give a fairly simple, algebraically tractable method of calculating small

distortion terms in weakly nonlinear systems.
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For example, consider again the �rst harmonic of the expansion of y(t) in (3.23),

shown here to three terms:

ej!at[
Va

2
G1(fa) +

V 3
a

16
G3(fa; fa;�fa) +

V 5
a

384
G5(fa; fa; fa;�fa;�fa) + � � �] (3.27)

In a weakly nonlinear system, the �rst term
Va

2
G1(fa) will dominate for small inputs.

This term is the familiar linear transfer function, and it corresponds to the linear

gain of the device. As the input gets larger, the second term
V 3
a

16
G3(fa; fa;�fa) starts

to contribute more, and it represents the gain compression or gain expansion of the

system. Thus, Volterra series give us a direct method of calculating, for example, the

1-dB compression point of a system. To derive the third-order intercept point IP3,

we need simply equate the �rst two terms in (3.27) and solve for Va.

Furthermore, the desensitization and intermodulation terms in x2.2.3 are now

directly expressible using equation (3.26): for three tones (fa; fb; fc) with amplitudes

(Va; Vb; Vc), the desensitization terms can be found to be
VaV

2
b

8
G3(fa; fb;�fb) and

VaV
2
c

8
G3(fa; fc;�fc), and the intermodulation term is

V 2
b Vc

16
G3(fb; fb;�fc).

What about deriving the kernels for an actual system? It transpires that for many

real-life systems, an algebraic expression for the kernels can be derived. Narayanan

[Nar70], for example, developed a nonlinear model of the bipolar transistor and quite

successfully applied Volterra series to it to calculate distortion in ampli�ers.

Even when algebraic expressions are too complex or unknown, Volterra series can

sometimes still be used. Volterra kernels can be extracted from numerical simulations

and/or measured data [Boyd83]. This will be further demonstrated in Chapter 5 and

Chapter 6.

3.4.2 When Volterra Series Are Bad

In problems using a Volterra series approach, the results are expressed as sums of

in�nite numbers of terms, like equation (3.27). These sums will either converge or

diverge. This has several implications.
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1. If the sum converges, it will do so to a single value. This means that in systems

with multiple possible output values (like systems with hysteresis), the best we

can hope for is convergence to one of the possible values.

2. If the sum converges, then the single value it converges to will be the steady-

state value. Any simulations of system behavior must be carried out to the

point where transients have died out, or else comparing results with Volterra

series calculations will be of little value.

3. If the sum converges, we hope it will do so fairly rapidly. Otherwise, the time

to compute the sum increases exponentially. In (3.27), we expect the linear

transfer function term, G1, to dominate. The G3 term should be very much

smaller than the G1 term, and the G5 term must be very much smaller than the

G3 term. G5 takes longer to compute than G3; if G5 is signi�cant relative to

G3, we must compute G7 to see if the sum converges, which takes longer still.

And so on.

4. If the sum diverges, obviously Volterra series do not give us much quantitative

information.

These points all revolve around the notion of the nonlinearity's strength. If it is

\weak enough", then our in�nite sums will converge and converge rapidly; G3 will be

much smaller than G1, and G5 will be so small that it is negligible. If the nonlinearity

is \too strong", the sums will either converge but require a long time to compute, or

they will diverge. Thus Volterra series are impractical in strongly nonlinear problems.

3.4.3 Volterra Series in This Thesis

How do we know how strong a nonlinearity we are dealing with? The path to answer-

ing this question is paved with heavy mathematics. The reader is invited to peruse

[Boyd85], [Sand83a], [Sand83b], [Sand83c] for a sampling.
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This thesis skims over the mathematical foundations of Volterra series in favor of

applying them to practical problems. Such an approach may seem haphazard, but

the author feels it is a reasonable method of proceeding for the following reasons:

1. Chapter 4 of this thesis is devoted to �nding the conditions that make the

nonlinearity strong. G1, G3, and G5 are all calculated and their sum checked

for convergence. Thereafter, every attempt is made to stay within the weakly

nonlinear region of operation.

2. Volterra series are not used alone: calculations are often supplemented with

numerical simulations and practical measurements.

3. Despite lack of adherence to strict mathematical theory, many, many authors

have applied Volterra series to real systems with more than moderate success.

This is a good indication that the method is quite robust, and the author feels

no qualms in following a tried and true path trodden safely by many before.



Chapter 4

Analysis of a Filter using Volterra

Series

4.1 Filter Circuit

The �ltering circuit that will be investigated here is shown in Figure 4.1. This partic-

ular structure was chosen because something quite similar might be used in a modern

integrated circuit [Sch90]. The active devices are transconductance ampli�ers, or TAs,

that turn the voltage di�erence between their two inputs into a current output. That

is, i = f(v+ � v�) for each device, where f is some function, as yet unspeci�ed. The

TAs are assumed to have in�nite input and output impedances.

Using Kircho�'s current law, we may write the time-domain nodal equations at

v1 and v2:

fi(vi) + f1(v2) = C1

dv1

dt
+

v1

R1

f2(�v1) = C2

dv2

dt

Upon rearrangement, these become

dv1
dt

= 1
C1

[� v1
R1

+ fi(vi) + f1(v2)]

dv2
dt

= 1
C2

f2(�v1)
(4.1)

33
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Figure 4.1: Filter circuit.

4.1.1 Linear Circuit Equations

If we assume the TAs are linear, then f(v+�v�) = gm(v+�v�) where gm is a constant

called the transconductance. Substituting this in (4.1) and taking Laplace transforms,

sV1 = �
1

R1C1

V1 +
gmi

C1

Vi +
gm1

C1

V2

sV2 = �
gm2

C2

V1

We can solve these for
V1

Vi
and

V2

Vi
to arrive at the system transfer functions

V1

Vi
=

gmi
C1

s

s2 + 1
R1C1

s+ gm1gm2

C1C2

(4.2)

V2

Vi
=

�gmigm2

C1C2

s2 + 1
R1C1

s+ gm1gm2

C1C2

(4.3)

v1 and v2 will be recognized as band pass and low pass outputs, respectively. The

corner frequency of the low pass �lter and the center frequency of the band pass �lter
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Figure 4.2: Band pass (top) and low pass (bottom) magnitude and phase graphs.

are both given by !2
0 =

gm1gm2

C1C2

, and the �lter quality factor is Q = R1C1!0. Graphs

of the magnitude and phase of these transfer functions are shown in Figure 4.2, with

!0 = 1, Q = 5, and the numerators set to one. In radio reception circuits we are more

interested in the band pass �lter, and so we will concern ourselves with the voltage

v1.

4.1.2 Nonlinear Circuit Equations

At this point, we may well ask ourselves what sort of nonlinearity we should assume

in this circuit. Obviously, once the circuit is manufactured in real life, the nature of
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its nonlinearities will depend on a great many factors.

In this thesis, the passive components of the �lter will be assumed ideal, and the

TAs will be assumed to contain a cubic nonlinearity. This will make the current-

voltage equation

i = gm(v+ � v�) + �(v+ � v�)
3 (4.4)

This choice is for two reasons. First, it does not complicate the equations to the point

where they are algebraically intractable. Second, it is a \realistic" choice in terms of

circuit design in that were the TAs to be fabricated as part of an integrated circuit,

they would most likely contain a bipolar or MOS di�erential pair at their input. The

i-v characteristic of a di�erential pair might have odd symmetry, and so will be made

up of odd Taylor series powers only. For example, in a bipolar di�erential pair the i-v

characteristic will be a hyperbolic tangent function, i = tanh(kv), k some constant;

the Taylor series expansion for this can be expressed as

i = kv �
(kv)3

3
+
(kv)5

15
�O((kv)7) (4.5)

which does indeed contain only odd Taylor series powers. Moreover, if kv is small

enough, the terms after (kv)3 can be neglected. Hence, (4.4) becomes a good approx-

imation to (4.5).

Is it reasonable not to include a dc o�set or a square term in (4.4)? It will simplify

the algebra, but how realistic is this omission? It can be shown that polynomial

nonlinearities with even powers lead to harmonics at even powers of the fundamental.

That is, a dc o�set or a square term will contribute to the output harmonics at dc,

2!0, 4!0, etc. Odd powers lead to harmonics at odd multiples of the fundamental,

i.e., !0, 3!0, etc. Since we are concerned only with input tones close to !0, the center

frequency of the band pass �lter, and we are interested in output tones close to !0,

polynomial nonlinearities with even powers are far less important than those with

odd powers because the even powers contribute only to harmonics far away from !0.

As long as the input has no dc o�set | an assumption we will also make | we can

then safely omit even power terms in (4.4).



cJames A. Cherry 1994 37

Substituting (4.4) for each TA in (4.1) gives

C1

dv1

dt
= �

v1

R1

+ gmivi + �iv
3
i + gm1v2 + �1v

3
2 (4.6)

C2

dv2

dt
= �gm2v1 � �2v

3
1 (4.7)

Solving (4.7) for v2 yields

v2 = �
gm2

C2

Z
v1dt�

�2

C2

Z
v31dt (4.8)

Substituting (4.8) in (4.6) gives

C1

dv1

dt
= �

v1

R1

+ gmivi + �iv
3
i �

gm1gm2

C2

Z
v1dt�

�1gm2

C2

[
Z
v1dt]

3

� �1

�
�
gm2

C2

Z
v1dt�

�2

C2

Z
v31dt

�3
(4.9)

Letting vi = x (the input) and v1 = y (the output) in (4.9), expanding the cubed term,

and collecting terms in a way that will be easy to handle gives an overall equation of

C1

dy

dt
+

y

R1

+
gm1gm2

C2

Z
ydt = gmix+ �ix

3

�
�2gm1

C2

[
Z
y3dt]

�
�1g

3
m2

C3
2

[
Z
ydt]3

�
3�1�2g2m2

C3
2

[
Z
ydt]2[

Z
y3dt]

�
3�1�22gm2

C3
2

[
Z
ydt][

Z
y3dt]2

�
�1�

3
2

C3
2

[
Z
y3dt]3 (4.10)

The linear terms in y have been written on the LHS of (4.10), and the terms with x

and the nonlinear terms in y have been written on the RHS.

4.2 Volterra Transfer Functions

Equation (4.10) can now be used to write the Volterra transfer functions, which

we will label Mn, for the �lter with nonlinear TAs. Since (4.10) is not explicitly
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solved for y(t), we must assume that y(t) can be expanded into a series where the

coe�cient of exp[j(!1 + � � � + !n)t] is Mn(f1; : : : ; fn). Then, for the terms on the

RHS such as [
R
ydt]3, we must use the results of x3.2.3 to express the coe�cient of

exp[j(!1 + � � � + !n)t] in terms of M (3)
n . Finally, all the results may be substituted

and solved for Mn(f1; : : : ; fn). The Volterra transfer functions for each term in (4.10)

are calculated in the subsections below.

4.2.1 C1
dy
dt

+
y
R1

+
gm1gm2

C2

R
ydt

Taking each term one at a time, starting with the middle one, if the nth coe�cient

of y(t) is Mn(f1; : : : ; fn), then the nth coe�cient of
y(t)

R1

is clearly
1

R1

Mn(f1; : : : ; fn).

For the �rst term, we know that y(t) will be composed of terms of the form

exp[j(!1 + � � � + !n)t]Mn(f1; : : : ; fn) (4.11)

where the coe�cient of exp[j(!1+ � � �+!n)t] is Mn(f1; : : : ; fn). Thus, the coe�cient

of C1
dy

dt
can be found by di�erentiating (4.11) and multiplying by C1, which means

the coe�cient of exp[j(!1 + � � � + !n)t] will be

C1[j(!1 + � � �+ !n)]Mn(f1; : : : ; fn)

By a similar argument, the coe�cient of exp[j(!1 + � � � + !n)t] from
gm1gm2

C2

R
ydt

will be

gm1gm2

C2

1

[j(!1 + � � �+ !n)]
Mn(f1; : : : ; fn)

Combining these results, the LHS of (4.10) will become"
C1

nX
i=1

j!i +
1

R1

+
gm1gm2

C2

Pn
i=1 j!i

#
Mn(f1; : : : ; fn) (4.12)

for general n. Both sides of (4.10) can be divided by the term inside square brackets

in (4.12) yielding a closed-form expression for Mn(f1; : : : ; fn) for the overall �lter.

First, however, the Volterra transfer functions for the terms on the RHS of (4.10)

must be found.
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4.2.2 gmix + �ix
3

Here, x(t) is set to the sum of n exponentials and the coe�cient of exp[j(!1+� � �+!n)t]

extracted. It is not di�cult to see that for n = 1, the coe�cient will be gmi; for n = 2,

the coe�cient will be zero; for n = 3, the coe�cient will be 6�i; and for n > 3, the

coe�cient will again be zero.

4.2.3 gm1�2
C2

R
y3dt

As stated at the beginning of the section, if we assume that y(t) has a Volterra

transfer function Mn(f1; : : : ; fn), then we can use the results from x3.2.3 to say that

the coe�cient of y3 will be M (3)
n (f1; : : : ; fn).

The integral sign might appear problematic at �rst, but as in x4.2.1 with
R
ydt,

all an integration does is multiply a coe�cient by [
Pn

i=1 j!i]
�1. The coe�cient for

this term will be

gm1�2

C2

Pn
i=1 j!i

M (3)
n (f1; : : : ; fn)

4.2.4
�1g

3

m2

C3

2

[
R
ydt]3

This term is rather like the one in x4.2.3, and we expect the coe�cient will involve

M (3)
n , except here the integration is done before the cube is taken. Although it

is not obvious at �rst, this means that when M (3)
n is written (following x3.2.3) as

Mv1 �Mv2 �Mv3 where v1 + v2 + v3 = n, the whole product is multiplied by

 
v1X
i=1

j!i

!�1
0
@ v1+v2X
i=v1+1

j!i

1
A

�10
@ nX
i=�

j!i

1
A
�1

where � = v1 + v2 + 1 = n� v3 + 1 as de�ned in x3.2.3. Furthermore, these must be

included inside the
P0

N summand.

Thus, the coe�cient of this term can be written

�1g
3
m2

C3
2

3!
X

(v;3;n)

X
0
N

Mv1(f1; : : : ; fv1)Mv2(fv1+1; : : : ; fv1+v2)Mv3(f�; : : : ; fn)Pv1
i=1 j!i

Pv1+v2
i=v1+1 j!i

Pn
i=� j!i
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or, in an abbreviated (yet hopefully clear) notation,

�1g
3
m2

C3
2

3!
X

(v;3;n)

X
0
N

Mv1Mv2Mv3P
v1
j!i

P
v2
j!i

P
v3
j!i

To clarify this further, the coe�cients are written out in full for a few small n. For

n = 1 and n = 2, the coe�cient is zero, since there is no way for v1 + v2 + v3 < 3

to be satis�ed when vi � 1, i = 1, 2, 3, must also be satis�ed. For n = 3, the only

partition is v1 = v2 = v3 = 1, making N = 3!
1!1!1!3!

= 1 and the coe�cient

�1g
3
m2

C3
2

3!
M1(f1)M1(f2)M1(f3)

(j!1)(j!2)(j!3)

For n = 4, the only partition is (v1; v2; v3) = (1; 1; 2), making N = 4!
1!1!2!2!

= 6 and the

coe�cient
�1g

3

m2

C3

2

3!
P 0

6
M1(f1)M1(f2)M2(f3;f4)

(j!1)(j!2)(j!3+j!4)

=
�1g

3

m2

C3

2

6 [ M1(f1)M1(f2)M2(f3;f4)

(j!1)(j!2)(j!3+j!4)
+ M1(f1)M1(f3)M2(f2;f4)

(j!1)(j!3)(j!2+j!4)

+ M1(f1)M1(f4)M2(f2;f3)

(j!1)(j!4)(j!2+j!3)
+ M1(f2)M1(f3)M2(f1;f4)

(j!2)(j!3)(j!1+j!4)

+ M1(f2)M1(f4)M2(f1;f3)

(j!2)(j!4)(j!1+j!3)
+ M1(f3)M1(f4)M2(f1;f2)

(j!3)(j!4)(j!1+j!2)
]

4.2.5 3g2
m2

�1�2
C3

2

[
R
ydt]2[

R
y3dt]

The Volterra coe�cients start to become more complicated now. Essentially, we have

a product of three terms:

[
Z
ydt][

Z
ydt][

Z
y3dt]

This suggests a form involving Mv1, Mv2 , and M (3)
v3

where v1 + v2 + v3 = n. After

careful examination, the coe�cient will be seen to be

3g2m2�1�2

C3
2

X
(v;3;n)

 X
0
N12

2!Mv1Mv2P
v1
j!i

P
v2
j!i

! 
M (3)

v3P
v3
j!i

!

The 2! inside the �rst brackets is to allow v1 and v2 to be exchanged, and

N12 =
n!

v1!v2!r!
where r =

8><
>:

1; v1 6= v2

2; v1 = v2

Here it is implied that v3 � 3 since if v3 = 1 or v3 = 2, then M (3)
v3

= 0 from x3.2.3.



cJames A. Cherry 1994 41

4.2.6
3gm2�1�

2

2

C3

2

[
R
ydt][

R
y3dt]2

By similar reasoning to x4.2.5, the coe�cient for this term is

3gm2�1�
2
2

C3
2

X
(v;3;n)

 X
0
N1

Mv1P
v1
j!i

! X
0
N23

2!M (3)
v2
M (3)

v3P
v2
j!i

P
v3
j!i

!

where

N1 =
n!

v1!(n� v1)!

N2 =
(n� v1)!

v2!v3!r!
where r =

8><
>:

1; v2 6= v3

2; v2 = v3

As in the previous section, here the implied conditions are v2 � 3 and v3 � 3.

Otherwise, the coe�cient is zero.

4.2.7
�1�

3

2

C3

2

[
R
y3dt]3

The coe�cient for this last term can be written (no doubt with great relief) as

�1�
3
2

C3
2

X
(v;3;n)

X
0
N

3!M (3)
v1
M (3)

v2
M (3)

v3P
v1
j!i

P
v2
j!i

P
v3
j!i

As in the previous two sections, we require v1 � 3, v2 � 3, v3 � 3. Since n =

v1 + v2 + v3, this coe�cient is non-zero only for n � 9.

4.2.8 Including All Terms

Table 4.1 summarizes these results. A few comments are in order.

1. It is a fair amount of work to calculate the terms in the Table. It would be

useful to be able to teach a symbolic algebra program to �nd the terms for a

general equation for us. Such an e�ort is beyond the scope of this thesis but

would be useful for future work.
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2. Let us write out the �rst few terms of the series explicitly. For n = 1, only the

�rst two rows of Table 4.1 are not zero:

[C1j!1 +
1

R1

+
gm1gm2

C2j!1

]M1(f1) = gmi

M1(f1) =
gmi

C1j!1 +
1
R1

+ gm1gm2

C2j!1

(4.13)

Multiplying top and bottom by
j!1

C1

and letting j!1 = s reveals

M1(f1) =
gmi
C1

s

s2 + 1
R1C1

s+ gm1gm2

C1C2

(4.14)

(4.14) is the same as the linear band pass transfer function in (4.2). This is the

expected result: if the system is linear, the Volterra approach should yield the

same transfer function as the usual frequency-domain analysis.

For n = 2, the only non-zero term is the one on the LHS; everything on the

RHS is zero.

[C1(j!1 + j!2) +
1

R1

+
gm1gm2

C2(j!1 + j!2)
]M2(f1; f2) = 0

M2(f1; f2) = 0 (4.15)

This result is interesting, for it means that for any even n, Mn for this �lter is

zero. The result follows from looking at the last �ve rows of the Table: all of

them involve partitioning n into three natural numbers v1, v2, v3. When n is

even, at least one of v1, v2, v3 must be even. We can use mathematical induction

to show that for all even n, Mn = 0. Here is a proof for small even n.

n=2 M2 = 0 from (4.15).

n=4 The only partition is (v1; v2; v3) = (1; 1; 2). So all terms will be made up

of sums of the product M1M1M2. But M2 = 0. Thus M4 = 0.
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n=6 Partitions are (v1; v2; v3) = (1; 1; 4), (1; 2; 3), and (2; 2; 2). All of these

contain M2 or M4, which are both zero. Thus M6 = 0.

And so on. For n even, each Mn depends on lower-order Mm where m is even

and m < n. By induction, then, Mn = 0 for all even n.

Lastly, for n = 3, the non-zero terms are the ones in the �rst four rows of

Table 4.1. The only partition of n = 3 is (v1; v2; v3) = (1; 1; 1), giving

(C1

P
3j!i +

1

R1

+
gm1gm2

C2

P
3 j!i

) �

M3(f1; f2; f3) = 6�i

�
�2gm1

C2

P
3 j!i

M
(3)
3 (f1; f2; f3)

�
�1g

3
m2

C3
2

X
0
N

3!M1(f1)M1(f2)M1(f3)

(j!1)(j!2)(j!3)
(4.16)

Expanding the second term on the RHS and recognizing that N = 1 in the

third term, (4.16) becomes

M3(f1; f2; f3) =

6�i � 6M1(f1)M1(f2)M1(f3)

"
�2gm1

C2

P
3 j!i

+
�1g

3
m2

C3
2

Q
3 j!i

#

C1

P
3 j!i +

1
R1

+
gm1gm2

C2

P
3 j!i

(4.17)

M3 thus depends on lower-order Mn, in this case, M1. The same pattern holds

true for higher n: M5 depends on M3 and M1, M7 depends on M5, M3, and

M1, and so on. M3 also depends on the i-v characteristic coe�cients gm and

� because it is derived from the interconnection of the three nonlinear TAs |

that is, we are deriving the Volterra series for a circuit from the kernels of its

subcircuits.

3. The last three rows in Table 4.1 are non-zero for n � 5, n � 7, and n �

9, respectively. As discussed in x3.4.2, the e�ort of computing M5, M7, etc.

increases exponentially. We will be concentrating onM1 andM3 for much of the

thesis except in x4.4 where M5 will also be computed to check the nonlinearity
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strength. The extra e�ort involved in �ndingM7 and higher is not justi�ed since

by the time they become numerically signi�cant the nonlinearity is probably too

strong for Volterra series to be useful anyway.

4. Given that the transfer functions higher than M5 will not be evaluated, it may

seem that writing out their formulae is pointless. The author disagrees:

(a) To the author's knowledge, explicit Volterra transfer functions for terms

such as [
R
ydt]2[

R
y3dt] have not been presented before in the literature.

(b) Once the correct approach is found, calculating these terms is not di�cult.

It seems wrong not to �nd them simply because \it's too hard". They can

be found explicitly, so why not do it?

4.3 Numerical Transient Analysis

The Volterra transfer functions can now be used to predict the behavior of the weakly

nonlinear circuit when the input is composed of one or more sinusoids. We wish to

investigate two things:

1. The improvement in accuracy that Volterra series a�ord us over simple linear

analysis.

2. The magnitudes of the harmonics generated due to the nonlinearity, in partic-

ular, the distortion terms mentioned in x2.2.3.

x4.4 addresses the �rst problem while the rest of the thesis addresses the second. It

will not do to simply use the Volterra transfer functions to calculate results; we would

like to check our calculations with a numerical simulator.

Frequently in this thesis we will know explicit time-domain equations for circuits,

e.g., equations (4.6) and (4.7). To solve them, we can implement our own numer-

ical integration program in a high-level language. A program that implements the
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Figure 4.3: Simple linear band pass �lter circuit.

fourth-order Runge-Kutta method [Pre92] for solving coupled di�erential equations

was written in C. At other times we will want to simulate a circuit with complex

devices such as transistors. SPICE is the industry standard for this task. We will be

using its transient analysis feature for distortion simulations in Chapter 5.

But how accurate are Runge-Kutta and SPICE? Anyone who has used SPICE will

know how dangerous it is to presuppose it provides accurate numerical results. The

accuracy of SPICE is a topic upon which an entire thesis could be written, but let us

con�ne ourselves to some simple observations about both SPICE and Runge-Kutta

numerical simulation which will be relevant in this thesis. For the remainder of this

section, we will be simulating the simple linear band pass circuit shown in Figure 4.3.

Choosing a linear circuit is logical because we know exactly how it should behave, and

we can use it to examine the accuracy of SPICE and Runge-Kutta transient analysis.

It will transpire that our observations will apply equally well to nonlinear circuits.

The component values in the linear �lter have been set so that the center frequency

is f0 = 1Hz. In the frequency domain, the transfer function for this �lter is

Vo

Vi
=

R

L
s

s2 + R

L
s+ 1

LC

(4.18)

Because the adaptive time step algorithm in the \H92b" version of SPICE was found

to give clearly erroneous results under certain conditions, the \H9007" option was

included in the SPICE input �le. This is an older �xed time step algorithm that
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Figure 4.4: Results of SPICE and Runge-Kutta transient analysis for fin = 1Hz.

gives much better results with simulation control variables left at their default values.

Although [Pre92] recommends adaptive time stepping when using the Runge-Kutta

algorithm to increase speed, the simulations we are doing are not long enough to

warrant it.

4.3.1 The Importance of Time Step

Let us investigate what happens when the input is a 1V-sinusoid at the center fre-

quency, 1Hz. From (4.18), the output should be a 1V-sinusoid in phase with the

input.

Graphs of the magnitude and phase of the output from the numerical transient

analysis are plotted in Figure 4.4. The x-axis shows the transient analysis time step

normalized to 1=fin = Tin, the period of the input voltage, and the y-axis shows for

the magnitude and phase graphs, respectively, the percent magnitude error and the

number of degrees phase error.

It is apparent that as the time step gets smaller, the magnitude and phase from

the transient simulation get closer to the expected values. This behavior is not sur-

prising: intuitively, a numerical integration algorithm should perform better with a
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Figure 4.5: Results of SPICE and Runge-Kutta transient analysis for fin = 0:9Hz.

smaller time step provided there are no discontinuities in the system equations and

no roundo�, and this circuit is linear and the equations continuous. Of course, the

trade-o� is that a more accurate solution requires longer simulation time.1

Graphs similar to Figure 4.4 are plotted in Figure 4.5 and Figure 4.6 for fin =

0:9Hz and 1.1Hz, respectively, to illustrate that the trend of increasing accuracy for

smaller time steps holds at input frequencies other than band center. It is interesting

that the Runge-Kutta phase error is a linear function of time step. It can be calculated

that as a function of input frequency f and time step T the phase error is about

1800fT degrees.

4.3.2 The Importance of Long Simulations

Several places in this thesis will require a frequency spectrummeasurement, which can

be obtained from a fast Fourier transform (FFT) of a numerical time-domain transient

analysis. This subsection and the next illustrate two important considerations for

FFT calculations. The results quoted here are for SPICE but they hold equally true

1The large magnitude spike in SPICE at 2.5% (i.e., a time step of 25ms) probably occurs because

25ms is an even divisor of one second, the period of the input.
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Figure 4.6: Results of SPICE and Runge-Kutta transient analysis for fin = 1:1Hz.

for Runge-Kutta.

We know that in Figure 4.3 when the input is a single sinusoid, the output should

be a single sinusoid at the same frequency after the transients have died out. The left

graph in Figure 4.7 shows the �rst ten cycles of the output when the input is a 1Hz,

1V sine wave and the time step is 10ms. The right graph shows the 10,000-point FFT

of 100 cycles of the same simulation. Line A (the top line) is the FFT of the �rst 100

cycles of the output waveform, line B (the middle line) is the FFT of the 100 cycles

after the �rst �ve cycles, and line C (the bottom line) is the FFT of the 100 cycles

after the �rst ten cycles.

Experience with FFTs tells us that a change in a signal's amplitude raises the

\noise oor" of its FFT graph. This is evident in line A: we are including the very

�rst cycle of the output which has a smaller amplitude than the rest of cycles. As a

result the FFT noise oor around the 0dB-tone at 1Hz is between �50dB and �70dB.

Even small changes in amplitude can have a deleterious e�ect; to the naked eye, it

appears that the transients in the output have died out fully after �ve cycles | an

observation refuted by the FFT graph, which shows that the noise oor of line C is

about 50dB below that indicated by line B. This demonstrates that the phrase \the
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Figure 4.7: Output waveform for fin = 1Hz.

transients have died out" is context-dependent. In the time domain, transients may

appear to have died out; in the frequency domain, the FFT may indicate otherwise.

It might come as a surprise to some that SPICE can achieve a noise oor more

than ten orders of magnitude below the desired tone, for this means that SPICE can

be accurate to more than ten decimal places, albeit for a linear circuit. We will be

hoping this accuracy holds for complex nonlinear circuits in the numerical Volterra

series extraction coming up in Chapter 5: each order of magnitude lowering of the

noise oor will be crucial for results that are not misleading. We shall see in x5.5.2

that the price to be paid in high-Q �lter circuits is mammoth simulation times to

ensure transients have fully settled.

4.3.3 The Importance of Decimal Places

The FFT noise oor is not tied to the purity of the output signal alone; it depends

directly on the number of decimal places of accuracy.

Figure 4.8 shows the FFT of the output in three di�erent simulations, all with a

1V-input sinusoid. Line A has fin = (1+10�6)Hz, line B has fin = (1+10�9)Hz, and

line C has fin = 1Hz exactly. These graphs illustrate that if the input frequency is
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not an exact multiple of the time step, even by as small an amount as one part per

billion, the FFT noise oor can be degraded by several orders of magnitude. This

is similar to what was observed in x4.3.2: transients that have not fully died out are

akin to small errors in the last few decimal places of the output.

4.3.4 What We Have Learned

The preceding three sections have o�ered the following two insights into the numerical

simulation of circuits:

� We must choose a small enough time step that our results are acceptably accu-

rate. We will probably have to live with small inaccuracies in magnitudes and

phases if we want simulation times that are reasonable.
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� We must ensure that all transients really have died out, and we must specify

components and frequencies to as many decimal places as possible. These will

minimize the FFT noise oor.

4.4 Single Tone Tests

We are now ready to compare the transient analysis to the Volterra transfer functions

for the nonlinear �lter. To begin, let us assign numerical values to its components. We

will make gmi = gm1 = gm2 = 2� and C1 = C2 = 1F. This will make !0 =

s
gm1gm2

C1C2

=

2� rads , or f0 = 1Hz, and Q = !0R1 = 2�R1. The linear gain at the center frequency

f0 will be A0 = gmiR1 = 2�R1. We shall see in x4.6 that choosing such a center

frequency is a sort of normalization.

Let us set R1 = 5
; this will give a �lter Q of about 30. Let us also make

�2 = 0:05 and �i = �1 = 0. This is making only one TA nonlinear and is perhaps

not very \realistic" in that each TA would likely have a similar nonlinearity in a

fabricated circuit. For now, our choice will put some nonlinearity in the circuit and

will give us a starting point. A circuit diagram with the components and their values

is shown in Figure 4.9.

4.4.1 Small Amplitude and Frequency at Band Center

For a start, let us calculate the amplitude and phase of the output signal for an input

at the center frequency, fa = 1Hz, with a small amplitude | say Va = 1mV. We

shall use equation (3.22) from x3.3, which says that for an input of Va cos 2�fat the

output component at fa will be

ej!at
"
Va

2
M1(fa) +

V 3
a

16
M3(fa; fa;�fa) +

V 5
a

384
M5(fa; fa; fa;�fa;�fa) + � � �

#

+e�j!at
"
Va

2
M1(�fa) +

V 3
a

16
M3(�fa;�fa; fa) +

V 5
a

384
M5(�fa;�fa;�fa; fa; fa) + � � �

#

(4.19)
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where !a = 2�fa. From equation (3.8) it follows that if the coe�cient of ej!at is

a+ jb, then the coe�cient of e�j!at will be a� jb, its complex conjugate. This means

that (4.19) can be rewritten and simpli�ed as follows:

(a+ jb)ej!at + (a� jb)e�j!at

= 2a cos!at� 2b sin!at

= 2
p
a2 + b2 cos (!at+ arctan

b

a
) (4.20)

Using Va = 10�3V and fa = 1Hz in (4.19), the individual terms can be calculated as

Va
2
M1(fa) = 1:5708 � 10�2 + j0

V 3
a

16
M3(fa; fa;�fa) = 0 + j2:9068 � 10�6

V 5
a

384
M5(fa; fa; fa;�fa;�fa) = �5:3793 � 10�10 + j7:1334 � 10�13
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Figure 4.10: Di�erence between SPICE and Volterra series.

Adding the �rst, then the �rst two, then all three terms and applying (4.20) predicts

the output signal amplitude and phase as

M1 : 31:41592656 0o mV

M1 +M3 : 31:41592716 0:0106o mV

M1 +M3 +M5 : 31:41592606 0:0106o mV

(4.21)

The magnitudes in equation (4.21) agree to seven digits. M1 (which is just the linear

transfer function) shows no phase shift at the center frequency, of course, but it can

be seen that the nonlinearity produces a tiny phase shift. At least, that is what the

Volterra transfer functions predict | does a numerical simulation of the circuit show

the same behavior?

Using SPICE, the caveats from x4.3 now come into play. By trial and error, it

is found that 300 seconds is long enough for the transients to fully die. Figure 4.10

shows the di�erence between the SPICE transient analysis and M1+M3 as a function

of time step. As expected, a smaller time step results in a more accurate numerical

simulation; a time step of 0.25ms gives a magnitude error of 2:3�10�5% and a phase

error of �0:0029o. That is, SPICE predicts a slight positive phase shift of 0:0077o,

compared with 0:0106o for M1 +M3. It can be inferred from the graphs that if we
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Figure 4.11: Di�erence between Runge-Kutta and Volterra Series.

could make the time step in the SPICE simulation in�nitely small, the results would

agree very closely to the Volterra transfer functions' prediction.

It would be nice to actually make the time step even smaller and increase our

con�dence, but this becomes unwieldy in SPICE for two reasons:

1. Simulation time increases rapidly. At a time step of 0.25ms, a simulation takes

over twenty minutes on a fast computer. The simulation is 300 � 4000 =

1; 200; 000 time steps total, which in twenty minutes means 1000 steps per

minute. This is not very fast, presumably because SPICE, being such a complex

program, has a good deal of overhead which becomes particularly noticeable in

simple circuits.

2. It uses more memory for �ner time divisions. This memory is not really needed

for our purposes: all we wish to do is measure the output peak and phase shift,

yet in SPICE we have no choice but to save the values at every time step.

We can overcome both di�culties with the Runge-Kutta program: it is very fast

when compiled and it can be made to extract only the information we want | the

amplitude of the output signal and the phase di�erence between it and the input.
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The di�erence between the calculated M1 + M3 output and the simulated one

as a function of time step is shown in Figure 4.11. Let us compare the results of a

300-second SPICE simulation to those of a 300-second Runge-Kutta simulation.

For a 1ms time step, SPICE gives a magnitude error of �1:6�10�5% and a phase

error of �0:047o, whereas the Runge-Kutta algorithm gives errors of �5:8 � 10�4%

and 0:18o, respectively. SPICE, however, takes over �ve minutes to execute, while

Runge-Kutta takes under ten seconds. If we reduce the time step in Runge-Kutta to

0.1ms, the simulation takes about eighty seconds, and the errors are now �1:8�10�5%

and 0:018o, respectively | better than a SPICE simulation that takes almost four

times as long. Not only that, but the clumsy post-processing that must be done

in SPICE to extract the magnitude and phase information has been avoided in the

Runge-Kutta program: the program extracts only the necessary information.

Particularly interesting is the fact that the Runge-Kutta phase error varies almost

linearly with time step (the graph on the right of Figure 4.11) for this nonlinear circuit

just as it did for the linear circuit in x4.3. The trend continues to very small time

steps, even 10�s and 1�s. The phase error at this latter time step is a mere 0:00018o.

If we perform a linear regression of the last few points on the phase graph, we �nd that

the phase at a time step of zero would be 0:0106027o , compared with 0:0106029o from

M1+M3. For small time steps, then, the magnitude of the Volterra series calculation

agrees with the simulation to about seven digits, and the phase to about six digits.

Therefore, it seems reasonable to conclude that the Volterra series approach models

the real circuit extremely closely.

The case we have examined is for a small input at the center frequency. How well

do Volterra series approximate reality at other amplitudes and frequencies?

4.4.2 Various Amplitudes and Frequencies

For the moment, let us keep the frequency �xed at band center, 1Hz, and examine

what happens as the amplitude is increased. We shall continue to use the Runge-
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Figure 4.12: Volterra series accuracy as a function of input amplitude.

Kutta program.

Figure 4.12 shows the di�erence between the predicted and simulated output mag-

nitude and phase with the input amplitude varying from 1mV to 10mV. The error

in the magnitude calculation is small in all three cases, but interestingly, the linear

transfer function M1 alone is more accurate than M1 +M3. Including M5 seems to

correct this de�ciency somewhat. However, the Volterra transfer functions do a much

better job of predicting the phase than the linear transfer function alone: with an

input of 10mV, the linear transfer function is o� by a whole degree while the nonlinear

transfer functions correct the error to less than 0:002o.

The results of sweeping the input signal amplitude from 10mV to 100mV and

comparing the calculation to the simulation are as shown in Figure 4.13. The non-

linear transfer functions provide some amplitude and phase correction over the linear

transfer function for input amplitudes up to about 20mV, but after that the simula-

tion predicts quite di�erent values from the transfer functions. Moreover, M1 +M3

and M1 +M3 +M5 disagree wildly with each other for an input of 100mV. It would

appear then that for inputs of this size, the sum is diverging (recall the discussion

in x3.4.2), which means Volterra series are no longer giving meaningful predictions

about the system. We will attempt to model the system with a large input of 200mV
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Figure 4.13: Volterra series versus input amplitude for larger inputs.

more accurately in the next section.

For completeness, Figure 4.14 shows the error in the Volterra transfer function

calculations at three other frequencies: 0:90Hz, 0:95Hz, and 1:05Hz. It is evident that

M1 +M3 provides a signi�cantly more accurate prediction of the output amplitude

and phase than does M1 alone. As well, the e�ect of the nonlinearity is weaker at

frequencies farther away from band center in that the error at a particular input

amplitude gets smaller. For example, at 100mV, the error in the linear transfer

function is 5% at f = 0:95Hz but only 0.8% at f = 0:90Hz. (At these frequencies,

the Volterra series appears to be converging: the correction M3 adds to M1 is large,

but the correction M5 adds is quite small.)

Let us briey examine some simulations with a �xed amplitude. In Figure 4.15,

the input amplitude has been set to 5mV and the error in the Volterra terms is plotted

as a function of frequency. Clearly, the linear transfer function error is smaller the

further away from the center frequency we go as was implied in Figure 4.14. As well,

both M1 +M3 and M1 +M3 +M5 agree closely with the simulation | more so than

does M1 alone.

To get an overall picture of the Volterra transfer functions' accuracy, it is in-

structive to draw a three-dimensional graph with amplitude and frequency being the
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Figure 4.14: Volterra series versus input amplitude at various frequencies.
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Figure 4.15: Volterra series versus frequency for a 5mV input.

independent variables. Figure 4.16 illustrates such plots for input amplitudes between

1mV and 10mV, and Figure 4.17 is for 10mV to 100mV. In the �rst set of graphs,

M1+M3 provides a signi�cant correction overM1 around the center frequency where

M1 is most inaccurate. M1+M3+M5 is almost identical withM1+M3. For the second

set of graphs (the ones with a larger input amplitude range), the nonlinear transfer

functions do not provide accurate correction at band center for the nonlinearity; all

six surfaces exhibit large errors.

Because of the simplicity of the assumed nonlinearity and because of our knowledge

of the system equations, we can explain why the Volterra transfer functions do not

do a good job of modeling the simulated circuit behavior for large inputs.

4.4.3 Strong Nonlinearity in the Filter

Figure 4.18 shows the simulated magnitude and phase at the output as a function

of both input amplitude and frequency. For small inputs, the band pass magnitude

and phase characteristics both look smooth, but for larger inputs, discontinuities

are apparent on both surfaces. We can show that these are due to the nonlinearity

becoming \too strong" as the input becomes larger.
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Figure 4.16: Volterra accuracy surface plots for small inputs.
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Figure 4.17: Volterra accuracy surface plots for large inputs.
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Algebraic analysis

Let us return to the time domain representation of the �lter, equations (4.6) and

(4.7), repeated here for convenience:

C1

dv1

dt
= �

v1

R1

+ gmivi + �iv
3

i + gm1v2 + �1v
3

2

C2

dv2

dt
= �gm2v1 � �2v

3

1

We have been investigating the case where �i = �1 = 0. Substituting these gives

C1

dv1

dt
= �

v1

R1

+ gmivi + gm1v2 (4.22)

C2

dv2

dt
= �gm2v1 � �2v

3

1
(4.23)

Solving equation (4.22) for v2 then di�erentiating it with respect to t gives

v2 =
C1

gm1

dv1

dt
+

1

R1gm1

v1 �
gmi

gm1

vi (4.24)

dv2

dt
=

C1

gm1

d2v1

dt2
+

1

R1gm1

dv1

dt
�

gmi

gm1

dvi

dt
(4.25)

Substituting (4.25) into (4.23) and putting things in a nice form gives

�v1 +
gm1gm2

C1C2

v1 = �
1

R1C1

_v1 �
�2gm1

C1C2

v3
1
+
gmi

C1

_vi (4.26)

In the literature we �nd that equation (4.26) can be identi�ed with the forced Du�ng

equation [Nayf79]

�u+ !2

0
u = �2�� _u� ��u3 + E(t) (4.27)

This is simply a non-homogeneous second-order di�erential equation in u with the

addition of a u3 term, denoted a nonlinear restoring force. In (4.27), !0 is the resonant

frequency, � is the damping coe�cient, � is a small parameter2, � is the strength of

2The author apologizes for the notational conict between �2, the TA nonlinearity, and �, the

small Du�ng equation parameter. The conict only exists in this section.
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the nonlinearity, and E(t) is the input. We will assume that the input is sinusoidal

and close to the resonant frequency:

E(t) = �k cos(
t)

= �k cos((!0 + ��)t) (4.28)

where � is the small parameter and � is the detuning. Comparing our �lter equation

(4.26) with the Du�ng equation (4.27) and the input (4.28), we can identify the

variables as follows:

u = v1

!2

0
=

gm1gm2

C1C2

as expected

� =
1

2�R1C1

(4.29)

� = �2
gm1

�C1C2

k =
gmi


�C1

Vin when vin = Vin cos(
t)

Equation (4.27) does not have an exact closed-form solution for u, but we can

solve it approximately for frequencies close to !0. Solving it and then making the

substitutions listed in (4.29) will yield the solution to our �lter equation (4.26). To

start with, u is assumed to be of the form

u = a cos(
t� ) +O(�)

� a cos(
t� )

= a cos((!0 + ��)t� ) (4.30)

That is, the output is assumed to be predominantly a sinusoid at the same frequency

as the input with amplitude a and phase  with respect to the input. The O(�) means

that we are assuming any other components in u (for example, the component at 3


which will arise from the u3 term) are much smaller than the main component at

frequency 
.
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To solve (4.27), we will proceed as Nayfeh and Mook do in [Nayf79]. The derivation

is not identical because we are di�erentiating the input | we have _vi(t) instead of vi

| but it is similar, and the reader is referred to [Nayf79] for more detail. Using the

method of multiple scales [Nayf79], we can derive the pair of equations:

��a = 1

2

k

!0

cos  (4.31)

a� � 3

8

�

!0

a3 = �1

2

k

!0

sin  (4.32)

To solve (4.31) and (4.32) for the amplitude a we square and add them, yielding"
�2 +

�
� � 3

8

�

!0

a2
�
2
#
a2 =

k2

4!2

0

(4.33)

which is an implicit equation for the output amplitude a as a function of the detuning

� (i.e., the frequency of the input) and the input amplitude k. To solve for the phase

 we divide (4.31) by (4.32), yielding

 = arctan
�a� 3

8

�
!0
a3

�a
(4.34)

How do we use (4.33) and (4.34) to draw magnitude and phase graphs for v1? For

the magnitude, we could solve (4.33) for a (amplitude) in terms of � (frequency), but

this involves solving a cubic in a2. A simpler approach is to solve it for � in terms of

a. This yields

� = 3

8

�

!0

a2 �

s
k2

4!2

0
a2
� �2 (4.35)

At each particular a value ap, there will an upper and a lower solution to (4.35), �u

and �l. The two (x; y) points on the v1 magnitude response graph will be

(!0 + ��l; ap) and (!0 + ��u; ap) (4.36)

The range of ap values over which we evaluate (4.35) is from amin = 0 up to the a

that makes the quantity under the square root sign zero:

k2

4!2

0
a2
� �2 = 0

amax =
k

2!0�
(4.37)
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For the phase graph, all that is required is substitution of (�l; ap) and (�u; ap) into

(4.34) to obtain two points (�u; u) and (�l; l). The corresponding two points on the

v1 phase response graph will be

(!0 + ��l; l) and (!0 + ��u; u) (4.38)

Aside: the Du�ng Equation Parameters

For those who have never seen the Du�ng equation before, it is most informative to

show the e�ect on the response of varying the parameters �, �, and k. This section is

somewhat tutorial in nature and is perhaps inappropriate in a thesis, but the author

feels it is short enough and of signi�cant enough interest that it is worthy of inclusion.

Figure 4.19 shows the magnitude and phase response of the �lter with a 200mV

input and with three di�erent values of �2: 0, 0:05, and �0:05. The solid line in both

graphs corresponds to �2 = 0; since this corresponds to a �lter with no nonlinearity,

it should behave exactly as a linear band pass �lter and the graphs con�rm this.

Choosing a positive value for �2 makes the magnitude graph bend to the right and

distorts the central portion of the phase graph to the right; choosing a negative value

for �2 distorts both graphs to the left instead. The larger j�2j, the greater the bending-

over e�ect. For �2 6= 0, it can be seen that at some frequencies there are three possible

output magnitudes and phases. It can be shown that the middle one is unstable but

that the outer two are stable [Nayf79]; which of the steady states the �lter chooses

depends upon the initial conditions. This will be discussed in greater detail shortly.

Figure 4.20 shows what happens when we �x �2 = 0:05 and vary the damping

coe�cient �. The �lter Q is inversely proportional to damping, and we can see that

the lower the damping, i.e., the higher the Q, the greater the distortion in the output

magnitude and phase. If Q is low enough the output has only one stable solution at

every frequency, as can be seen for the Q = 2�R1 = 6:28 case.

Figure 4.21 shows the e�ect of varying the input amplitude. For small inputs,

the output has only one stable operating point, but as the input gets larger, the
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Figure 4.19: E�ect of varying sign of nonlinearity in Du�ng equation.

distortion of the characteristics becomes severe enough to give rise to two possible

operating points.

To close this aside, we will comment briey on a type of hysteresis which seems

confounding to explain when observed in the laboratory. In Figure 4.22, the magni-

tude curve for the �lter with Vin = 200mV has been plotted. If we were to connect

this circuit in the laboratory and increase the frequency slowly starting from point

A, then on a spectrum analyzer the gain would follow the dash-dot line. It would

increase smoothly through point B until point C where it would suddenly drop to

point E and continue to point F . Immediately after the drop from C to E, decreas-

ing the frequency even slightly would not reverse the jump. On the other hand, if

we were to decrease frequency slowly starting from point F , the gain would follow

the dashed line: it would decrease smoothly through point E until point D where it

would suddenly jump up to point B, and even increasing the frequency slightly would

not reverse the jump.

If we understand the Du�ng equation the explanation for the hysteresis should

be clear. No circuit is perfectly linear in real life, no matter how well-designed it is,

and under certain conditions the small nonlinearities might become large enough to
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Figure 4.20: E�ect of varying damping in Du�ng equation.

have a strong e�ect. We must be wary.

Du�ng versus Runge-Kutta and Volterra

We can now see why there are discontinuities in Figure 4.18: for large enough inputs,

the responses become multi-valued. In the Figure the initial conditions were such that

the output chose the lower of the two stable solutions when two solutions existed.

This means that as the frequency was increased, the output magnitude rose slowly

and the output phase fell slowly until the multiple-solution region of the response

when both suddenly jumped down and followed the lower branches of the curves

instead of continuing along the upper branches.3

To verify the accuracy of the calculated Du�ng equation response and demon-

strate the existence of the two stable solutions, the �lter was simulated with a 200mV

input over a range of frequencies using the Runge-Kutta program. It was found by

trial and error that using the initial conditions v1 = 0V, v2 = 0V yields solutions

on the lower portion of the response curves while the initial conditions v1 = �6V,

3Of course, even if the solution had followed the upper branches, there would still be a disconti-

nuity as it \fell o�" the peaks of the response curves down to the lower branches.
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Figure 4.21: E�ect of varying input amplitude in Du�ng equation.
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v2 = 6V yields solutions on the upper portion. The results are illustrated in Fig-

ure 4.23. The solid line shows the response calculated using equations (4.35) and

(4.34) and the circles show the simulated values. The correspondence is between

them good. No pair of initial conditions seems to give rise to the middle solution

when three exist; this is as it should be since the middle solution is not stable. If the

system were to begin in that state, the slightest perturbation would send it to either

the upper or lower solution.

It is not surprising that the error in the Volterra series calculation is large for large

inputs; because of our investigation, we now see that for a large input the �lter has

multiple solutions in a certain frequency range. x3.4.2 discussed this very phenomenon

and warned that Volterra series could not be expected to yield accurate results, and

the truth of this warning is con�rmed.

The author confesses this example was \cooked up": only one of the three TAs

was made nonlinear precisely because it makes possible the algebraic analysis carried

out in this section. This does not, however, render it any less valid or useful. To

demonstrate the power the analysis has given us, we can draw a graph of the maximum

allowable �lter Q as a function of Vin and �2 that ensures the single-valuedness of the

magnitude response.

To generate such a graph, we must return to the positive root for �, �u, in equation

(4.35). Returning to Figure 4.22, we recall that the right half of the magnitude

response (the line CDEF) is essentially the graph of (�u; a) from (4.35) with a bit of

shifting and scaling. We can see that the graph is multi-valued if the locus of points

(�u; a) ever becomes vertical | or, to put it another way, if the slope of the graph

ever becomes in�nite. The slope is given by
dy

dx
=

da

d�u
, and if we wish to �nd where

this becomes in�nite, it is the same as �nding where its inverse is zero:

d�u

da
= 0 (4.39)

Substituting (4.35) into (4.39) and solving for a yields the rather nasty eighth-order
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Figure 4.24: Maximum-allowed �lter Q before jump resonance in Du�ng equation

occurs.

polynomial

�2a8 �
k2

4!2

0

a6 +
k4

9�2!2

0

= 0 (4.40)

If this equation has a real root for a in the range (0; amax) = (0;
k

2!0�
) from equation

(4.37), then we know the graph is multi-valued. If not, the graph is single-valued.

Therefore, for a particular pair of (�2; Vin) values, we calculate all the parameters in

equation (4.29) and determine the largest value of Q for which (4.40) has no real

solutions for a over (0; amax). Naturally, numerical root-�nding techniques are a

prerequisite.

A surface is plotted in Figure 4.24. Vin and �2 have been varied over the range 0:01

to 0:1, and the maximum allowed �lter Q in dB, Qmax, is also displayed. The graph

is consistent with Figure 4.19, Figure 4.20, and Figure 4.21: higher Vin and �2 mean

stronger nonlinearity and consequently the Q required for a multi-valued response is
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lower.

More surprisingly, our surface is planar! We can see that a 20dB-increase in Vin

results in a 20dB-decrease in Qmax. Moreover, a 20dB-increase in �2 results in a

6:67dB-decrease in Qmax. We may therefore conclude

Qmax /
1

Vin�
1=3
2

(4.41)

It is not obvious (to the author, at least) how the simple relation in (4.41) falls out

of the mathematics, but it certainly agrees with intuition. And the graph gives us

a way to tell if we are approaching the region where Volterra series are unlikely to

give us accurate numerical results | if we are near the multi-valued response region,

Volterra series will probably fail. Truly, our insight has been strengthened.

4.5 Two Tone Tests

We shall now examine the performance of a slightly more realistic �lter when there

are two input sinusoids. As stated at the beginning of x4.4, in a manufactured circuit

all TAs would likely have nearly the same nonlinearity and so this time the cubic

coe�cients will be set to �i = �1 = �2 = �0:05. A negative value for � means the i-v

characteristics will bend horizontally rather than vertically for large voltage inputs,

and this too is likely to be the case in a manufactured circuit.4 The other components

will retain their values. The new circuit is shown in Figure 4.25.

Let us suppose that the �lter is tuned to the desired signal at fa = 1Hz and

that there is an interfering signal close by at fb = 0:98Hz. Let us also make their

amplitudes equal and fairly small, say Va = Vb = 200�V. Because there are two tones

now we cannot simply measure the magnitude and phase di�erence between input

and output; we must run the Runge-Kutta simulator and take the FFT of the output.

4The circuit examined in x4.4 with positive �2 is therefore rather unrealistic. A real circuit is much

more likely to display a leftward-bending Du�ng characteristic rather than the rightward-bending

one in Figure 4.22 in x4.4.3.
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Figure 4.25: Filter for two tone tests.

As long as we follow the guidelines in x4.3, this should give us the magnitudes and

phases of each component to good accuracy.

To calculate the expected output component values we must now make use of

equation (3.24). To illustrate, we will �nd all the Mn that contribute to the tone at

fa. These are:

Va
2
M1(fa) = 3:1416 � 10�3 + j0

V 3

a

16
M3(fa; fa;�fa) = 0 � j4:6509 � 10�8

VaV 2

b

8
M3(fa; fb;�fb) = 0 � j3:6353 � 10�8

VaV
4

b

128
M5(fa; fb; fb;�fb;�fb) = �4:0620 � 10�13 � j2:3856 � 10�13

V 3
a
V 2

b

64
M5(fa; fa;�fa; fb;�fb) = �1:2834 � 10�12 � j7:7356 � 10�13

V 5
a

384
M5(fa; fa; fa;�fa;�fa) = �6:8854 � 10�13 + j1:5558 � 10�14

(4.42)

The sum of these six terms converges rapidly to 6:283185 6 �0:002o mV. With more


