Virtual Patch-Cords for the Katosizer

. by
David Blythe, John Kitamura, David Galloway, and Martin Snelgrove

Computer Systems Research Institute
University of Toronto
Toronto, Ontario
MSS 1A4

Abstract

An object-oriented graphics system is presented which allows a musician to program a very ver-
satile signal processor/synthesizer by drawing a block diagram of the desired ‘patch’.

Introduction

The Katosizer {Kita85, Kita86], is a highly programmable digi-
tal synthesizer and signal processor. Its architecture is shown
in Figure 1: a high-spced ‘pipelined bus’ (p-bus, [Rose85})
interconnecting specialized signal and control processors. We
have augmented it by adding an Atari 520ST personal com-
puter to handle graphics and disks. This paper describes our
implcmentation of a sophisticated human interface and control
program that runs on this system. It provides a natural way for
musicians to exploit the power of a highly programmable and
rather complex machine in real time.

foot

pedals MIDI

Figure 1 - Katosizer Architecture

Related Work

Our human interface is an example of a ‘direct manipulation
system’ [Shne83], of which the Pinball Construction Set
[Budg83] is another example. A similar, but single-machine,
interface is provided in the Soundscape [Mime86] program.
The diagrams we use are a little like those in OEDIT [Verc75]
which attempted to generate (non real-time) MUSIC V
{Math69] programs. Another relative of the virtual patchcord
may be found in the work of Haeberli [Haeb86], in which a
graphically-driven connection manager is used to design com-
puter graphics algorithms for IRIS workstations. Graphical
editors for parameters, envelopes and so on are relatively
well-known [Buxt82, Gres85, Prus85].

359

The User’s View

Figure 2 is a screen dump showing the user’s view of the Kato-
cord system. It shows a ‘patch’ in which icons representing
physical objects and programs have been connected together
by ‘virtual patchcords’

A MIDI keyboard E is shown driving an FM synthesizer
,Uj\ (actually consisting of Katosizer software). Its carrier

envelope may be changed with an envelope editor .
Preset envelopes and other parameters may be selected by

using a MIDI program-select button E‘ﬂ‘i . The keyboard’s

) . AR
pitch-bend and modulation wheel @ are also
connected to the synthesizer.

The synthesizer output is fed into a distortion box
controlled by a foot pedal ég . This in turn enters a ‘tape-

loop’ | whose loop gain is controlicd by a slider \ , and
whose input gain is set by another pedal. The result goes to the

speaker <')) .

ICMC 86 Proceedings

Automatic Patching

Our system doesn’t just draw these pictures, it implements
them. Figure 3 shows how the patch is implemented on a
Katosizer. The connection manager (conman) within the Atari
workstation interprets the graphical representation and sends
the appropriate code to the 68000 controller, which in turmn
communicates with the signal processors.

Keyboard | { Foot pedal Foot pedal
[Mot] [aoc] [(anc

Atari 68000
Controlles
’ 1’@
/ \ght
Foot pedal

/ Tape

Loop

)
Frogram
ERICOICY);
nse

Speaker
Figure 3 - Patch Implementation

The MIDI keyboards and foot pedals are off-the-shelf
hardware. They are plugged into MIDI receivers and low-
spced 8-bit analog-to-digital converters on the 68000-based
rcal-time controller. The synthesizer, distortion module and
tape loop are assembly code running on high-performance
TMS320 {Ti83] digital signal processors (DSPs). The output
(speaker) icon refers to a 16-bit audio-quality digital-to-analog
converter driven by a DSP (at a 35-45KHz sampling rate). The
slider is a piece of graphics softwarc running on the Atari,
whose value can be changed with the mouse.

This system boasts three different types of machine, running
code written in three different languages. The DSPs run hand-
tuned assembly code for high speed. The controller code is
written in Concurrent Euclid {Cord81], which is a Pascal-like
language featuring modules, processes and Iloare monitors
[Hoar74]. This was a convenient choice because our ‘objects’
correspond ncatly to processcs and modules, and monitors
offer a good way to synchronize processes. The Atari software
was written in C because we had good graphics code available
(our port of Bell Labs’ BLIT system {Pike84]) and because the
dirtiness of C-allows faster graphics response.

The DSPs and controller communicate through the p-bus. It is
a high speed pipelined synchronous bus that allows processors
to send 16-bit data packets together with 8-bit ‘opcodes’ to any
of 64 destination processors. We use opcodes to specify the
type of a message.

ICMC 86 Proceedings

360

Our software protocol is based on UNIX ‘sockets’ [Lcff83]. A
socket is a2 mechanism allowing processes to read and write to
each other as if they were files. We chose this as a scheme of
proven power that has the incidental advantage that we will
also be able to reuse a lot of this code as a UNIX graphical
‘shell’. The controller and Atari have UNIX-like socket
procedures, while the DSPs run a faster but less-gencral
version of the same protocol. This process makes the exact
location of a process inconsequential to the processes with
which it communicates.

Examples of Objects

Waveshaping

Controlled distortion effects are obtained by a DSP program
which takes an audio input « and produces an audio output y
according to:

y=kfie (1=K
where the value & sets the amount of distortion, (rom a clean
signal at k=0 to a fully distorted signal at k=1. The function (§

is implemented with a 2K-sample table lookup with
interpolation.

This program has three kinds of inputs. It can accept sample
values (1), distortion levels (k) or new distortion tables (f.

The standard way to specify the distortion function is through
Chebychev polynomial components {Road79]. This can be
done in our system by touching the waveshaping icon with
button 1. This transforms the icon from its default dormant
state to an editing window where tlic user can drag sliders
representing magnitudes of 10 Chebychev components and sce
the resulting function. Figure 4 shows the transformed version
of the waveshaping icon.

Figure 4 - Edit Mode of Waveshaping Icon

Reverb(Tape Loop

The reverb/tape loop is similar in implementation to
waveshaping. A circular buffer of up to 64K samples is used
to store and loop audio samples. The software implements the
equations:

x(0)=k yx(t—nT)+kyu(t)

in which x is the signal in the reverberation loop recycled every
n samples (up to a couple of seconds) with a gain k| (lypically
between 0.9 and 0.990), and the input is fed in with gain k;.
The output is then formed by adding the reverb signal to the
input by

y=x(t—nT)}+u

This piece of code accepts inputs u, ky and &.

Foot Pedal

Foot pedals are standard volume pedals connected to a 2KHz
8-bit A/D converter on the controfler. Each of the eight A/D
channels corresponds to a software process on the controller.
These processes monitor their pedals for changes, and send
appropriate messages. They can also receive messages that set
their minimum and maximum values.

Note that, while DSPs run a single process cach at audio rates,
the controller runs a dozen or more processes at control rates.

MIDI Input

The controller has two MIDI input ports. Each port receives
and transmits keyboard, button-push, thumbwheel and other
data from up to 16 channels. In order to simplify interaction
with MIDI, our software demultiplexes these strcams of data
and the user can individually manipulate each type of MIDI
cvent, cach with a scparate icon.

:I'hc MIDI keyboard objects produce ‘notc-on’, ‘velocity’ and
note-off’ events. It accepts inputs allowing key-transpose and
velocity scaling.

Graphical Slider

The stiders arc implemented in C code running on the Atari.
I'hey provide the uscr with a virtual ‘valuator’ which can be
uscd just like a foot pedal. It also has inputs allowing ‘min’
and ‘max’ valucs to be sct. By default they are 0 and 1023,
and are interpretcd as fixed point numbcers between 0 and .999.

Recorder

This is a multitrack event recorder running in the control
proccssor. Any of the control devices (MIDI, foot pedals,
sliders, etc.) may be connected to the recorder, and any value
changes recorded for later playback. The recorded output can
be reconnected to any object in the same way as any of the
input devices. The recorder also possesscs some simpie editing
fcaturcs such as joining or mixing of tracks and deletion of
cvents. These featurcs are activated by transforming the
recorder icon into its edit window form. :

Envelope Editor

The envelope object is an Atari object used for creating new
envclopes, functions, or waves. The user may store or retrieve
an existing function or draw a new one on the screen using the
mousc. Each time the envelope associated with the object is
changed it is transmitted out its port to all objects connected to
it. Figure 5 shows an envelope being created.

Figure § - Creation of Envelope

Frequency Modulation

The FM [Chow73] object has one part running in the controller
and other parts running in DSPs. Each DSP impicments two

. two-oscillator FM. voices with arbitrary wavetables and

361

envelopes. It produces a single (mixcd) audio output and
accepts 6 input parameters: c:m ratio, carricr envelope,
modulator envelope, frequency, key velocity and pitch bend.

Allocation of voices to note events is done by the portion of
the object resident in the controller. This code can control an
arbitrary number of voices.

Similar objects do Karplus-Strong {Karp83] string synthesis,
percussion simulation [Kita85], sampling, and wavetable
synthesis.

Microphone

One of the DSPs controls a pair of 50KHz 16-bit A/D
converters. This allows the system to process externally
generated signals.

The Connection Manager

Figure 6 shows the appearance of the Atari screen just as a
connection is about to bc made. The uscr has alrcady dragged
icons for two objects from the menu, connected one end of a
‘cord’ to the first object, and run the cord to the sccond object
(pegging it down in a couple of places so as not to trip over it
later). He/she is just about to plug it into the sccond object.
This was started by pushing button 2 at which point the pop-up
menu of jacks appeared, selecting the appropriate jack by
dragging the mouse up and down (current jack has black
background), and the conncction will be completed when
button 2 is relcased.
i 1 s AR

The system’s side of this dialogue is handled by a pair of
processes, one in the Atari and one in the controller, which
together form the conncction manager ‘conman’. They
maintain a list of conncctions and allocate resourccs. Other
processes register sockets and their names with conman. These
are the names that appear on the pop-up menu when the user
goes to make a patch. The Atar portion of conman also
contains the graphics code for drawing wires.

When the icons for the two objects were initially selected, the
controller portion of conman allocated DSP processors for
them and loaded the appropriate code into them. When the
connection is made, a message will be sent to the source DSP
indicating its proper destination.

The audio application places stringent restrictions on how
connections may be made and data changed. Conman is
responsible for obeying these rules. Changing the distortion
function in waveshaping, for instance, takes about 2500 sample
times. We therefore change tables by allocating a new
waveshaper, filling its tables, and then switching over. As a

{CMC 86 Proceedings

ICMC 86 Proceedings

sccond example, unplugging an audio cable should be
preceded by fading the oniginal signal down to avoid ‘pops’.

Conman is also responsible for enforcing some primitive type
conventions. In particular, we distinguish between low-speed
(control) data streams and high-speed (audio) data, and do not
allow interspecies connections. This is necessary because the
audio strcams are too fast to be handled by the very general
protocols we use for control (or even by the Atari hardware).

Conclusions and Future Work

The virtual patch-cord concept has proven to be a convenient
and powerful technique for the integration of many tools, just
as the pipe has become an indispensable part of Unix. It is not
just an emulation of an outdated hardware concept, but is
applicable to any field which makes use of interactive
computer graphics. However, there is a great deal of work left
to be done.

The software is still in an infantile state. Much work is
nccessary to make the system more robust, cohesive, and
ultimately more powerful. Thrce areas which are in need of
more rescarch are:

e A hierarchical macro facility for grouping collections of
objects and their interconncctions. This gives the user a
powerful way to store ‘patches’ or (favourite)
configurations. It is also a way to control the visibility of
objects. If an interconnected collection of objects can be
represented by single icon, it affords the user with a way to
unclutter the screen. We would also like to use this
mechanism to let us edit the algorithms within our existing
objects at the opcration level: for instance to add feedback
to the FM synthesizer.

e Currently the system requires total recompilation if a new
object is to be added to the system. This is largely due to
the complexity of the interaction between the control
processors and the DSPs (e.g. the control processor needs
to know some details about the DSP code in order to
interface to it properly). A mechanism through which new
objects could be added dynamically would be useful
particularly for the deveiopment of new algorithms. Once
the algorithm developer is accustomed to using this system
he will undoubtedly wish to test new algorithms
immediately with other objects in the system and the time
necessary to rccode and recompile the system will be
intolerable.

e Typing nceds work. While audio strcams have only one
interpretation, control data streams have many. At the
moment it would be meaningless to connect a slider to the
keyboard input of a synthesizer. One school of thought
requires explicit type transformers and helpful messages
from objects which are offered the wrong type of jack.

The Katosizer hardware is in the process of redesign to
increase the communication bandwidth of the interconnection
network and the amount of memory on the processors. When
the new hardware is finished, the existing software will be
moved to it. The new hardware promiscs to support a much
larger number of DSPs making the possibilities for the number
of interconnected objects much more interesting.

Finally, many more objects need to be added to the system.
Many of these are unrelated to actual synthesis or filtering,
such as more sophisticated recorders and sequencers and
editors, sampled sound editing tools, etc.

362

Acknowledgements

The Katosizer hardware and software is the result of a large
amount of work by a small number of pcople. The authors
would like to extend thanks to Steve Germann who has
contributed much to improving the hardwarc design and to
William Buxton who made helpful comments about the paper,
and who has helped to keep music projects alive at CSRI
despite the threats of the bourgeoisie.

References

[Budg83] Budge, B. (1983). Pinball Construction Sect
(Computer Program). San Mateo, CA, Electronic Arts

[Buxt82] Buxton, W., Patel, S., Reeves, W., & Baccker, R.
(1982). Objed and the Design of Timbral Rcsourccs.
Computer Music Journal, Vol 6, Summer, pp.32-44

[Chow73] Chowning, John M. (1973). The Synthesis of
Complex Audio Spectra by Means of TFrequency Modulation.
Journal of the Audio Engincercing Society, Vol 21(7), 1973

{Cord81] Cordy, J.R., & Holt, R.C. (1981). Specification of
Concurrent Euclid. Report CSRG-133, Computer Systcms
Research Group, University of Toronto, 1981

[Gres85) Gresham-Lancaster, Scot (1985). Macintosh as a
Live Performance Tool. Proceedings of the International
Computer Music Conference, Vancouver.

[Haeb86] Hacberli, Paui (1986). A Data-Flow Manager for an
Interactive Programming Environment. Usenix Summer
Conference Procecdings, Atlanta.

[Hoar74] Hoare, C.A.R. (1974). Monitors: An Opcratings
System Structuring Concept. Communications of the ACM,
Vol 17(10), Oct. 1974, pp.549-557 :

[Karp83] Karplus, K. & Strong A. (1983). Digital Synthesis of
Plucked String and Drum Timbres. Compuier Music Journal,
Vol. 7(2), 1983, pp.43-55

[Kita85] Kitamura, J., Buxton, W., Snelgrove, M., & Smith,
K.C. (1985). Music Synthesis by Simulation using a General-
Purpose Signal Processing System. Procecdings of the
International Computer Music Conference, Vuncouver.

{Kita86] Kitamura, John (1986). A Gencral-Purpose Signal-
Processor for Music Synthesis. MASc Thesis, Department of
Electrical Engineering, University of Toronto.

[Leff83] Leffler, S.J., Joy, W.N, & Fabry, R.S. (1983).
4.2BSD Networking Implementation Notes. Computer
Systems Rescarch Group, U.C. Berkeley, July 1983

{Math69] Mathews, Max V. (1969). The Technology of
Computer Music. The M.LT. Press, Cambridge, 1969

[Mime86] Mimetics Corp. (1986). Soundscape (Computer
Program).

{Pike84] Pike, R. (1984). The Blit: A Multiplexed Graphics
Terminal. AT&T Bell Laboratories Technical Journal,Vol
63(8)

[Prus85] Prusinkiewicz, Przemyslaw (1985). Graphics
Interfaces for MIDI-Equipped Synthesizers. Proccedings of

the International Computer Music Conference, Vancouver.

[Road79] Roads, Curtis (1979). A Tutorial on Nonlinear
Distortion or Waveshaping Synthesis. Computer Music
Journal Audio, Vol. 3(2), 1979, pp.29-34

[Rose85] Rose, 1.S., Loucks, W.M., & Vranesic, Z.G. (1985).
FERMTOR: A Tunable Multiprocessor Architecture. [EEE
Micro, Aug. 1985

[Shne83] Shneiderman, Ben (1983). Dircct Manipulation: A
Step Beyond Programming Languages. /EEE Computer, Aug.
1983, pp.57-69

| T183] Texas Instruments (1983). TMS-32010 User's Guide.
Dallas: Texas Instruments.

{Verc75] Vercoe, Barry (1975). Man-Computer Interaction in
Creative Applications. M.LT. Technical Report, Nov. 1975

363

{CMC 86 Proceedings

