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ABSTRACT: It is advantageous to use oversampling
techniques with either AX or broadband data convertersin
both wireline and wireless digital receivers. This paper
discusses the oversampling techniques for all-digital
implementation of symbol timing recovery in digita
receivers. The idea of oversampling techniques for timing
recovery isto adjust the timing phases while decimating the
oversampled signals. The spurious signal introduced by
adjusting the CIC' s (cascaded integrator-comb) timing phase
has been analyzed and was found to be a serious problem. In
this paper, a dual-differentiator timing phase adjustable
decimation filter has been proposed and was used for symbol
timing recovery. Simulations were provided to verify the
vaidity of the proposed method.

[. INTRODUCTION

Symbol timing recovery is critical for reliable data
detection in modern digital communications[l]. There are a
number of ways to recover the symbol timing. In general,
they can be categorized as [ I]-[3]: pure analog recovery,
mixed (analog-digital) recovery, and all-digital recovery. The
first two methods require VCOs to create synchronized
timing clocks. To take advantage of digital techniques, it is
desirableto implement timing recovery circuit all-digitally.

Inadigital system, thereis often afixed system clock, and
asynchronous digital inputs create difficulties. Interpolation
for symbol timing recovery shown in Fig. |(a) was proposed
in[2,3] and issuitable for all-digital implementation where
Nyquist rate sampled input signals are available. Due to the
widespread use of oversampling in digital communications
(see Section 1), the interpolation method for timing recovery
shown Fig. I(a) is not optimal for this case. This is made
clearer in Fig. I(b), where the analog input is oversampled.
The basic principle of interpolation for timing recovery
reveals that the interpolation seems to be redundant in Fig.
I(b). An aternative way is shown in Fig. I(c), where the
timing recovery is donein the decimation. In this paper, we
will discuss the novel symbol timing recovery where we
incorporate timing phase adjustment in the decimation and
therefore save lots of computation.

[I. OVERSAMPLING IN DIGITAL RECEIVERS

Block diagrams for digital receivers using oversampling
techniques are shown in Fig. 2. Note that the structures are
suitable for many applications.
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Fig.1 All-digital symbol timing recovery: (a) interpolation for
Nyquist sampling; (b) interpolation for oversampling, and (c)
decimation for oversampling.
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Fig.2 Block diagrams of digital receivers: (a) digital baseband
receiver; (b) digital quadrature receiver.

1) ISDN: Thisis abaseband transmission and no carrier is
needed. Hence, a lowpass A% data converter is used, as
shown in Fig. 2(a). Decimation filters follow the data
converter to downconvert the signal rate, as discussed below.

2) Voiceband data transmission: QAM is popular for high
speed data transmission.  The center frequency of the
incoming IF signal is comparable with the signal band.
Therefore, a lowpass AZ modulation data converter can be
used, shown in Fig. 2(b). The signals, Sin and Cos, are used
to mix the modulated signalsto | and Q signals.

3) Digital quadrature radio receiver with bandpassAX
modulation: Fig. 2(b) is suitable for both basestation and
handset digital cellular, where abandpass A%, data converter
is used. Here, the sampling frequency, f,, is typicaly
chosen to be four times the center frequency of the incoming



IF signal, f,.; namely, f,, =4f,. Therefore, the Sin and
Cos signals for the mixing become simple sequences {1, 0, -
1,0, ..} and {0, -1, 0, 1, ...}. After mixing, oversampled
baseband I and Q signals are obtained.

4) Digital quadrature radio receiver with broadband data
converter: The front-end can be a broadband data converter
to digitize an IF signal in a digital quadrature radio receiver
in Fig. 2(b). The design difference between this receiver and
that in 3) lies in different considerations in the following
decimation filters.

The digital receiver structures shown in Fig. 2(a) and (b)
are two general frames which fit all the oversampling digital
receivers considered here. The common point among them is
that we have oversampled baseband signals after mixing (no
mixing for ISDN transmission). Therefore decimation filters
are necessary to remove the out-of-band noise and
simultaneously downconvert the oversampling rate to
appropriate rate. A very efficient CIC decimation filter
followed by two half-band decimation filters can complete
this job [7],[9-11]. Since AZ data converters are very
promising in achieving the stringent requirements in digital
receivers, we concentrate on AX oversampling technique
(although it is not necessary) in the following discussion. The
principle is easy to extend to broadband data conversion.

The decimation is split into three stages [9]. The CIC filter
first downconverts the oversampling rate, f,,, to four times
the final rate, f,,, which is twice the data symbol rate, f,, [7-
9]. The reason for “four times” is to keep the droop in the
edge of the signal band low enough to ease frequency
compensation in the baseband DSP. The CIC decimation
filter is optimal if its order is one more than the order of the
preceding lowpass AZ modulation or one more than half the
order of the preceding bandpass AX modulation. Following
the CIC filter is a halfband decimation filter which further
downconverts the sampling rate to 2f,. Then two data
filters are used to shape the received signal pulses to meet the
Nyquist criterion and also downconvert the sampling rate to
fy- Included in the baseband DSP are symbol timing
recovery (if we use the interpolation method), carrier recovery
(not for ISDN transmission) and channel equalization.
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Fig. 3 An Nth-order CIC decimation filter with decimation factor R

An Nth-order CIC filter [10] is shown in Fig. 3. The filter
consists of NV digital integrators operating at a high sampling
rate, f.,, and N differentiators at a low sampling rate,
fou !/ R, where R is an integer sampling downconversion
factor. Its transfer function is H(z)= ((1 -z /ra-7" ))N.

There are many advantages to a CIC decimation filter, such
as: no multipliers, no need for storage elements, wide range
of rate change, etc.

1. ADJUSTABLE TIMING PHASE CIC FILTERS FOR
TIMING RECOVERY

Now that oversampled baseband signals are available with
the digital receiver in Fig. 2, the question becomes how to
adjust the timing through decimation.

A. Adjustable Timing Phase CIC Decimation Filters

One straightforward way to adjust the timing phase in Fig.
2 is to vary the CIC filter’s downconversion factor, R, in one
symbol interval to minimize the timing error. It can be seen
from Fig. 2 that the relation between the symbol rate, f,,
and the oversampling rate, f,, is f;, =f, /(8R) or
T;,=Ts, /(8R), where T, and T, stand for the
oversampling and symbol intervals, respectively. As can be
seen from Fig. 3 that we can advance or retard the timing
phase by reducing or increasing R. The minimum timing
increment is T,,. R is now time-varying, with an average
value that tracks drift between local and transmitted clocks.
The definition of T, is different for a lowpass and bandpass
AZ, although the definition of the OSR is similar (defined as
the ratio of the oversampling rate to twice the band of
interest).

T, /(2- OSR), for alowpass AX. data converter
A I, / (4- OSR), for a bandpass AY data converter

Note that the minimum phase adjustment is better than 1 %
of the symbol interval with the OSR over 64 for these two
cases.
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Fig.4  Block diagram of oversampling timing recovery with a
timing phase adjustable CIC decimation filter

B. Timing Recovery Loop

Fig. 4 shows a block diagram for timing recovery which
incorporates the above idea. Note that only one path is shown
for the sake of simplicity and the idea can easily be extended
to the quadrature case in Fig. 2. Also shown in the figure are
the sampling rate relationships among all the blocks, which
are in agreement with those of Fig. 2. The timing error
detector in Fig. 4 uses a two-sample-per-symbol algorithm to
detect the timing error, such as in [4]. Other symbol-rate



algorithms [1] can also be used, depending on the
applications. The loop filter works at the symbol rate and
outputs a smoothed timing error for each symbol interval.
The controller, which is clocked at the oversampling rate,
f adjusts the timing phase by changing the
downconverson factor, R, in a counter. There are basically
two ways to adjust the timing phase. In one-oversampling-
interval adjustment, we need to advance or retard one
oversamplinginterval, T,, , onetime. This can be realized by
reducing or increasing R by a factor of 1. In multi-
oversampling-interval adjustment, the controller calculates
exact how many oversampling intervals are needed to
advance/retard in order to minimize the timing error. we can
implement this by changing R by more than 1.
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Fig.5 Timing diagram for the timing phase adjustment

Sincef, = 8 fy, (thatis, one symbol interval corresponds
to eight controller’s output clock intervals), one simple way to
adjust the timing phase is shown in Fig.5, where we adjust
the timing phase of the sample, for example, after sample #7
during one symbol interval (see (a); (&) is not used here and
will be described in the following section). The reason is that
new symbol and timing error data are available after thefirst
sample #0. The timing phase is adjusted by &.T, in one
symbol interval, whered is an integer (> 0 for advancing, <
O for retarding, = O for retaining).

C. Delaysin the Timing Recovery Loop

The timing recovery loop in Fig. 4 uses feedback and extra
delays besides those introduced by the timing error detector,
loop filter and controller should be discussed. Loop delay has
an adverse effect on the stability of the feedback loop. The
extradelays are introduced by N differentiators of the CIC
decimation filter, the halfband decimation filter and data
filter. The transfer function of the N cascaded differentiators
is(1-z™")". Hence, they introduce adelay of NT, | 2, where
T, =1 fr . We assume FIR hafband and datafiltershave N,
and N, taps, respectively. Thus, the delays introduced by
these two filters are (N, - DT, /2 and (N, - DT,
respectively. Using T, = £T;,, we get the total extra loop
delay asfollows:

Y?

D,.,,=(N,+2N )T, /16 )

In practice, thefirst term in (2) introduces about 1 symbol
interval delay, and the second has adelay of 2~ 3 symbols.
The total extradelay would be around 3 ~ 4 symbol intervals.

VI. A PRACTICAL OVERSAMPLING TECHNIQUE FOR
TIMING RECOVERY

A. Problems with the Timing Adjustable CIC Filter

After the timing phase adjustment, the CIC filter’s output
needs a while to settle down due to the delays in its N
differentiators. Before settling down, there are a couple of
“gpikes’ in the output of the CIC filter, possibly causing
misadjustment. To see the problem, let us go back to Fig. 3.
The output of the CIC filter at timeinstant ¢, , y(t,, ), can

be written as,

N
()= 20, ¥ Famsy) 3)
k=0

where index m means that the sample is the mth at time
instantz,,,, ¢,’s are the coefficients for the combined transfer

function of the N-cascaded differentiators andy (¢, ) IS
the input of the differentiators at time ingtant ¢, ,, . For a
uniformly sampled signal with the period of T, we have
14, =mT,, wherem isan integer.

Due to decimation by a factor of R, the input of the
differentiators, y, (2., ), isadecimated version of the output
of the N cascaded integrators, x, (¢, ), whereindex n stands
for the nth sample. Therefore, we have, at timeinstant, ¢, ,

Yyt )=xy (R-tg,) 4

which will be made clearer by using ¢, =nT,, and
T,=R-T,, for uniform sampling, but Ristiming-varying.
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Fig.6 Timing phase adjustment starting aftertmmo_l)

Let us consider a case where we start to adjust timing phase
at the sample time after ¢, ,,,,, by changing R from R, to
(R,+6) and back to R, afterwards, as shown in Fig. 6,
whereR, is the nominal value of R. We have

{RO(mOH)TSA, 1<0
Tremort) = R (my + )Ty, +8Tg,, 12 O ()



where 1is an integer. Substituting (5) and (4) into (3), we
get

N
Y e oxy (Ry(my +1 k)T, ), 1<0
k=0
!
Ycoxy (Ry(mg +1-k)+8)T,,)
y(tR(m0+]))= ] k=01v (6)
+.cixy (Ry(my +1-K)Ty, ), OSI<N

=
1]

1+]

e xy ((Ry(my +1-k)+8)T,, ), 12N
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<

It is noted that the CIC filter's outputs, y(gg,e.,) for

0< 1< N, calculated from (6) are not the actua values we
expected since there exist nonuniform samplesin (6). The
nonuniform samples are due to having atime shift of 8T, in
the first term compared to second termin (6) for 0<I<N.
The correct valuesfor 0S 1< N, ¥'( #4001, ), ShoUld be

N
Y rononty) = 2o (R (g +1=k)+8)Ty, ), 0S I< N (7)
k=0

The nonuniform sampling (or jitter) due to the timing
phase adjustment results in errors,

AJ’(’"O +l) = y(tk(m()+1))_ y,(tR(m()H)), that is

N

Ay(my +1)== D c,Axy (Ry(my +1-K)), OSI<N  (g)
k=l+1

where

Axy (Rym) = x\ (RymT g, ) — x (RymT, +0T,) 9)

Since x, (n) is the output of the N cascaded integrators

(accumulators), it is very large and varies alot from sample to
sample.  In the design of the timing adjustable CIC
decimation filter, a natural ovefflow method is used and the

word length is limited by B._ =[N log,R|+B,, where

(B, + 1) isthe input data’s word length in 2's complement
representation, and [ x Tis the smallest integer not less than
x . Theerrorsin (8) introduced by nonuniform sampling are
very large and span N samples starting from the beginning of
timing phase adjustment. The direct results from simulations
shown that there are N “spikes’ (namely, spurious samples).
These errors will affect the following both symbol data
detection and timing error detection.

B. Dual-Differentiator Adjustable Timing Phase CIC Filters
Considering the fact that the CIC decimation filter needs
N samples to settle down and the factsthat N < 4 is the most

often used and T, = 8T, , we propose a dual-differentiator

timing phase adjustable CIC decimation filter, which is
shown in Fig. 7 with the whole timing recovery loop. The

timing diagram for clocks and a control signal needed for the
timing recovery is depicted in Fig. 5.
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Fig. 7 A practical timing recovery loop with a dua-differentiator
cic decimationfilter

Here we adjust the timing phase of channel 1 (Fig. 5(a'))
during the first half symbol interval (that is, starting after
sample #3 of the differentiators's input data) and output
channel 0. After the adjusted data settles down, we start to
adjust the timing phase of channel 0 in the second half
interval (Fig. 5(a)) (namely, starting after sample #7 of the
differentiators’ input data) and output the correct data from
channd 1. MUX is used to aternatively select between
channels 0 and 1, controlled by a control signal, Ctrl . This
scheme can accommodate up to 3rd-order AT or 6th-order
bandpass A% modulation, which is usually used in practice
[7]. For the CIC filter'sorder N = 5, we have to increase T,
to T, = 16T,

The controller provides the sampling rates f, and f,,
required by channels 0 and 1, respectively, with different
phases, as shown in Fig. 5. The averages of these two
sampling rates are the same during one symbol interval. All
the other sampling rates, 2 f, , f, and f,, are derived from
fr» shown in the figure. The phase jitter introduced by
adjusting the timing phase in the second half symbol interval
has a negligible effect on the following halfband filter and
datafilter due to the small difference between two samples
separated by a phase shift of 3 T, for baseband signals.

C. Smulation Results

Simulations have been done to verify the validity of the
proposed method. Using SPW simulator [ 12], we set up a
QPSK system for simulations, where an bandpass AX
modulation is used. The timing error detection agorithmis
taken from [4], which can be written as,

k)= y, (k=¥ (k) =y, (k=D yo (k=Dly k) =y k=1 (10)

where e(k) is the timing error at instant k, and y,, y, are

the data outputs of 1, Q channels, respectively. It is noted that
the proposed method is independent on the timing error
detection algorithm. This algorithm is good for detecting data
signals with alternating O’s and1’s. If a proper loop filter is



put after this algorithm, it also works well with random data
signals. Two cases are considered here: oneis for training
sequences with aternating O's and I's, and another is for
random data signals. The sampling phase shift error and
frequency drift error are smulated for each case. The phase
shift is around a quarter of a symbol period and the local
clock frequency is 0.1 % fast relative to the transmitter
sampling rate. The timing errors shown in Fig. 8 are taken at
the output of afirst-order lead-lag loop filter, where the errors
are normalized to the symbol amplitude and T is symbol
interval. Fig. 9 shows the constellation scatter plots for the
output signals. In the simulations, we did not compensate for
around 3 dB droop introduced by the CIC filter. Therefore,
the points in the scatter plots seem to be dightly large.

V. CONCLUSIONS

Interpolation is a way to implement symbol timing
recovery all-digitally. However, many applicationsin digital
communications require oversampling techniques for the data
conversion. By incorporating the timing phase adjustment in
the CIC decimation for the oversampling signals, we have
shown avery efficient way to recover the symbol timing while
performing decimation. In addition to having the advantages
inherent in all-digital implementation, the oversampling
techniques for symbol timing recovery have other advantages
over theinterpolation method:

1) When the symbol datais recovered, we also recover the
timing clock. Thisisimportant in some application such as
the ISDN U-interface [11], wherethe recovered timing clock
will be used in the network termination to synchronize the
transmitting data to the master clock in the line termination.
Extracircuits will be needed for thisjob in the interpolation
method [3].

2) It takes advantages of oversampling techniques (AZ
modulation and broadband sampling) which are becoming
increasingly important in meeting the stringent requirements
for digital receivers. By incorporating symbol timing recovery
in the required decimation filter, we can have simple
implementation.
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Fig. 8 Timing errors for (1,0) training sequence: (a) phase shift, (b)
frequency drift. For random data: (c) phase shift, (d)
frequency drift
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frequency drift



