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ABSTRACT: It is advantageous to use oversampling
techniques with either AX or broadband data converters in
both wireline and wireless digital receivers. This paper
discusses the oversampling techniques for all-digital
implementation of symbol timing recovery in digital
receivers. The idea of oversampling techniques for timing
recovery is to adjust the timing phases while decimating the
oversampled signals. The spurious signal introduced by
adjusting the CIC’s (cascaded integrator-comb) timing phase
has been analyzed and was found to be a serious problem. In
this paper, a dual-differentiator timing phase adjustable
decimation filter has been proposed and was used for symbol
timing recovery. Simulations were provided to verify the
validity of the proposed method.

I. INTRODUCTION

Symbol timing recovery is critical for reliable data
detection in modern digital communications [l]. There are a
number of ways to recover the symbol timing. In general,
they can be categorized as [ l]-[3]: pure analog recovery,
mixed (analog-digital) recovery, and all-digital recovery. The
first two methods require VCOs to create synchronized
timing clocks. To take advantage of digital techniques, it is
desirable to implement timing recovery circuit all-digitally.

In a digital system, there is often a fixed system clock, and
asynchronous digital inputs create difficulties. Interpolation
for symbol timing recovery shown in Fig. l(a) was proposed
in [2,3] and is suitable for all-digital implementation where
Nyquist rate sampled input signals are available. Due to the
widespread use of oversampling in digital communications
(see Section II), the interpolation method for timing recovery
shown Fig. l(a) is not optimal for this case. This is made
clearer in Fig. l(b), where the analog input is oversampled.
The basic principle of interpolation for timing recovery
reveals that the interpolation seems to be redundant in Fig.
l(b). An alternative way is shown in Fig. l(c), where the
timing recovery is done in the decimation. In this paper, we
will discuss the novel symbol timing recovery where we
incorporate timing phase adjustment in the decimation and
therefore save lots of computation.

II. OVERSAMPLING IN DIGITAL RECEIVERS

Block diagrams for digital receivers using oversampling
techniques are shown in Fig. 2. Note that the structures are
suitable for many applications.
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Fig. 1 All-digital symbol timing recovery: (a) interpolation for
Nyquist sampling; (b) interpolation for oversampling, and (c)
decimation for oversampling.

Fig. 2 Block diagrams of digital receivers: (a) digital baseband
receiver; (b) digital quadrature receiver.

1) ISDN: This is a baseband transmission and no carrier is
needed. Hence, a lowpass AZ data converter is used, as
shown in Fig. 2(a). Decimation filters follow the data
converter to downconvert the signal rate, as discussed below.

2) Voiceband data transmission: QAM is popular for high
speed data transmission. The center frequency of the
incoming IF signal is comparable with the signal band.
Therefore, a lowpass AX modulation data converter can be
used, shown in Fig. 2(b). The signals, Sin and Cos, are used
to mix the modulated signals to I and Q signals.

3) Digital quadrature radio receiver with bandpass AI
modulation: Fig. 2(b) is suitable for both basestation and
handset digital cellular, where a bandpass AZ data converter
is used. Here, the sampling frequency, fa, is typically
chosen to be four times the center frequency of the incoming





algorithms [1] can also be used, depending on the
applications. The loop filter works at the symbol rate and
outputs a smoothed timing error for each symbol interval.
The controller, which is clocked at the oversampling rate,
1 adjusts the timing phase by changing the
downconversion factor, R, in a counter. There are basically
two ways to adjust the timing phase. In one-oversampling-
interval adjustment, we need to advance or retard one
oversampling interval, Tu, one time. This can be realized by
reducing or increasing R by a factor of 1. In multi-
oversampling-interval adjustment, the controller calculates
exact how many oversampling intervals are needed to
advance/retard in order to minimize the timing error. we can
implement this by changing R by more than 1.
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Fig. 5 Timing diagram for the timing phase adjustment

Since fR = 8 fsy (that is, one symbol interval corresponds
to eight controller’s output clock intervals), one simple way to
adjust the timing phase is shown in Fig. 5, where we adjust
the timing phase of the sample, for example, after sample #7
during one symbol interval (see (a); (a’) is not used here and
will be described in the following section). The reason is that
new symbol and timing error data are available after the first
sample #O. The timing phase is adjusted by &. Ts in one
symbol interval, where 8 is an integer (z= 0 for advancing, <
0 for retarding, = 0 for retaining).

C. Delays in the Timing Recovery hop
The timing recovery loop in Fig. 4 uses feedback and extra

delays besides those introduced by the timing error detector,
loop filter and controller should be discussed. Loop delay has
an adverse effect on the stability of the feedback loop. The
extra delays are introduced by N differentiators of the CIC
decimation filter, the halfband decimation filter and data
filter. The transfer function of the N cascaded differentiators
is (l-~-‘)~. Hence, they introduce a delay of NTR I 2, where
TR = 1/ fR . We assume FIR halfband and data filters have N,,
and Nd taps, respectively. Thus, the delays introduced by
these two fil ters are (Nh - l)TR /2 and (N* - l)TR,
respectively. Using TR = iTsY, we get the total extra loop
delay as follows:

In practice, the first term in (2) introduces about 1 symbol
interval delay, and the second has a delay of 2 - 3 symbols.
The total extra delay would be around 3 - 4 symbol intervals.

VI. A PRACTICAL OVERSAMPLING TECHNIQUE FOR
TIMING RECOVERY

A. Problems with the Timing Adjustable CIC Filter
After the timing phase adjustment, the CIC filter’s output

needs a while to settle down due to the delays in its N
differentiators. Before settling down, there are a couple of
“spikes” in the output of the CIC filter, possibly causing
misadjustment. To see the problem, let us go back to Fig. 3.
The output of the CIC filter at time instant tRm , y(tRm ) , can
be written as,

where index m means that the sample is the mth at time
instant tRm, ck ‘s are the coefficients for the combined transfer
function of the N-cascaded differentiators and ~,,,,(t~(~_~~ ) is

the input of the differentiators at time instant tRc,,,_kl. For a

uniformly sampled signal with the period of TR, we have
1

Rlll
= mTR, where m is an integer.

Due to decimation by a factor of R, the input of the
differentiators, yN ( tRm ), is a decimated version of the output
of the N cascaded integrators, X~ ( fs” ) , where index n stands
for the rzth sample. Therefore, we have, at time instant, tRm ,

YN~tRm~=$,~~~tsm~ (4)

which will be made clearer by using tsn = nTsA and
TR = R. TsA for uniform sampling, but R is timing-varying.
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Fig. 6 Timing phase adjustment starting after fRcmo_I1

Let us consider a case where we start to adjust timing phase
at the sample time after tRc,,,+,) by changing R from R. to

(Ro+6 ) and back to R. afterwards, as shown in Fig. 6,
where R. is the nominal value of R . We have

Ro(mo +OTsA, l-CO
1R(mO+l) = Ro(mo +l)TsA +&Tu, 12 0 (5)



where 1 is an integer. Substituting (5) and (4) into (3), we

It is noted that the CIC filter's outputs, y(lRcmw,)) for

0 5 1 c N , calculated from (6) are not the actual values we
expected since there exist nonuniform samples in (6). The
nonuniform samples are due to having a time shift of 8Ts* in
the first term compared to second term in (6) for 0 5 1 < N .

The correct values for 0 < 1 c N , y’( rRcm,,+,) ), should be

Y’OR~mC+~)=~ckxN~(~O(mo+l-k)+8)TsA), O<l<N (7)
k=O

The nonuniform sampling (or jitter) due to the timing
phase adjustment results in errors,
Ay(mo +l)= y(~R~~~,~)-y’(~R~~~~~), that is

Ay(~o+~)=-~~&(Ro(~o+&~)), O<l<N (8)
Lj+1

where

~~(R~m)=x~(RomT~~)-x~(RomT~* +STsA) (9)

Since am is the output of the N cascaded integrators
(accumulators), it is very large and varies a lot from sample to
sample. In the design of the timing adjustable CIC
decimation filter, a natural ovefflow method is used and the
word length is limited by Bma =[N log2 RI+ Bin, where
(Bin + 1) is the input data’s word length in 2’s complement
representation, and rxj is the smallest integer not less than
x . The errors in (8) introduced by nonuniform sampling are
very large and span N samples starting from the beginning of
timing phase adjustment. The direct results from simulations
shown that there are N “spikes” (namely, spurious samples).
These errors will affect the following both symbol data
detection and timing error detection.

B. Dual-Differentiator Adjustable Timing Phase CIC Filters
Considering the fact that the CIC decimation filter needs

N samples to settle down and the facts that N 2 4 is the most
often used and TR = 8Tsy, we propose a dual-differentiator
timing phase adjustable CIC decimation filter, which is
shown in Fig. 7 with the whole timing recovery loop. The

timing diagram for clocks and a control signal needed for the
timing recovery is depicted in Fig. 5.

Fig. 7 A practical timing recovery loop with a dual-differentiator
CIC decimation filter

Here we adjust the timing phase of channel 1 (Fig. 5(a’))
during the first half symbol interval (that is, starting after
sample #3 of the differentiators’s input data) and output
channel 0. After the adjusted data settles down, we start to
adjust the timing phase of channel 0 in the second half
interval (Fig. 5(a)) (namely, starting after sample #7 of the
differentiators’ input data) and output the correct data from
channel 1. MUX is used to alternatively select between
channels 0 and 1, controlled by a control signal, Ctrl . This
scheme can accommodate up to 3rd-order AZ or 6th-order
bandpass AZ modulation, which is usually used in practice
[7]. For the CIC filter’s order N 2 5, we have to increase TR

to TR = 16Tsy.

The controller provides the sampling rates fR and fR1
required by channels 0 and 1, respectively, with different
phases, as shown in Fig. 5. The averages of these two
sampling rates are the same during one symbol interval. All
the other sampling rates, 2fN, fN, and fsy, are derived from
fR, shown in the figure. The phase jitter introduced by
adjusting the timing phase in the second half symbol interval
has a negligible effect on the following halfband filter and
data filter due to the small difference between two samples
separated by a phase shift of 6 TM for baseband signals.

C. Simulation Results
Simulations have been done to verify the validity of the

proposed method. Using SPW simulator [ 12], we set up a
QPSK system for simulations, where an bandpass AZ
modulation is used. The timing error detection algorithm is
taken from [4], which can be written as,

where e(k) is the timing error at instant k , and y,, yQ are

the data outputs of I, Q channels, respectively. It is noted that
the proposed method is independent on the timing error
detection algorithm. This algorithm is good for detecting data
signals with alternating O’s and 1’s. If a proper loop filter is



put after this algorithm, it also works well with random data
signals. Two cases are considered here: one is for training
sequences with alternating O’s and l’s, and another is for
random data signals. The sampling phase shift error and
frequency drift error are simulated for each case. The phase
shift is around a quarter of a symbol period and the local
clock frequency is 0.1 % fast relative to the transmitter
sampling rate. The timing errors shown in Fig. 8 are taken at
the output of a first-order lead-lag loop filter, where the errors
are normalized to the symbol amplitude and T is symbol
interval. Fig. 9 shows the constellation scatter plots for the
output signals. In the simulations, we did not compensate for
around 3 dB droop introduced by the CIC filter. Therefore,
the points in the scatter plots seem to be slightly large.

V. CONCLUSIONS

Interpolation is a way to implement symbol timing
recovery all-digitally. However, many applications in digital
communications require oversampling techniques for the data
conversion. By incorporating the timing phase adjustment in
the CIC decimation for the oversampling signals, we have
shown a very efficient way to recover the symbol timing while
performing decimation. In addition to having the advantages
inherent in all-digital implementation, the oversampling
techniques for symbol timing recovery have other advantages
over the interpolation method:

1) When the symbol data is recovered, we also recover the
timing clock. This is important in some application such as
the ISDN U-interface [1 1] ,  where the recovered timing clock
will be used in the network termination to synchronize the
transmitting data to the master clock in the line termination.
Extra circuits will be needed for this job in the interpolation
method [3].

2) It takes advantages of oversampling techniques (AX
modulation and broadband sampling) which are becoming
increasingly important in meeting the stringent requirements
for digital receivers. By incorporating symbol timing recovery
in the required decimation filter, we can have simple
implementation.

REFERENCE

[l] E.A. Lee and D.G. Messerschmitt, Digital Communication,
Boston, N.Y.: Kluwer Academic Publishers, 2nd printing, 1990

[2] A. Haoui, H.-H. Lu and D. Hedberg, “An all-digital timing
recovery scheme for voiceband data modem,” Proc. IEEE Conf.
Acoust.,  Speech, Signal Processing, pp. 1911-1914, 1987

[3] F.M. Gardner, “Interpolation in digital modem - Part I:
Fundamentals,” IEEE Trans. Commun., vol. 41, pp. 502-508,
Mar. 1993

[4] F.M. Gardner, “A BPSK/QPSK timing-error detector for
sampled receivers,” IEEE Trans. Commun., vol. 41, pp. 423-
429, May 1986

[5] D.G. Messerschmitt, “Echo cancellation in speech and data
transmission, ” IEEE J. Selected Areas in Commun., vol. 2, no.
2, pp. 283-297, Mar. 1984

[6] J. Mitola, Guest Editor, Special Issue on Software Radios,
IEEE Commun. Mag., May 1995

[7] J.C. Candy and G.C. Temes, Oversampling Delta-Sigma Data
Converters: Theory, Design and Simulation. IEEE Press, New
York, 1992

[8] R. Schreier and M. Snelgrove, “Bandpass sigma-delta
modulation,” Electron. Lett., vol. 25, pp. 1560-1561, Nov. 1989

[9] J.C. Candy, “Decimation for sigma delta modulation,” IEEE
Trans. Commun., vol. 34, pp. 72-76, Jan. 1986

[10] E.B. Hogenauer, “An economical class of digital filters for
decimation and interpolation,” IEEE Trans. Acoust,,  Speech,
Signal Processing, vol. ASSP-29, pp. 155-162, Apr. 1981

[11] D.G. Messerschmitt, “Design issues in the ISDN U-interface
transceiver, ” IEEE J. Selected Areas in Commun., vol. 4, no. 8,
pp. 1281-1293, Nov. 1986

[12] SPW Manuals, Alta group of Candence System, 1992

Fig. 8 Timing errors for (1,O) training sequence: (a) phase shift, (b)
frequency drift. For random data: (c) phase shift, (d)
frequency drift
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Fig. 9 Scatter plots for training sequences: (a) phase shift, (b)
frequency drift. For random data: (c) phase shift, (d)
frequency drift


