
filtorX: computer-aided filter design and industry

C. Ouslis, A.S. Sedra, W.M. Snelgrove?, S. Good*

Dept. of Elec. Eng., University of Toronto, Toronto, Ontario, M5S lA4,
e-mail: ouslis@eecg.toronto.edu fax:(416)978-7423

Dep t . of Electronics, Carleton University, Ottawa, Ontario, KlS 5B6
Mite l Semiconductor Corp., Kanata, Ontario, K2K 1x5

Abstract-Switched-capacitor transmit
and receive filters for a CCITT compliant
codec were designed at Mite1 Semiconduc-
tor employing hand-coded Pascal[12] pro-
grams and a variety of other tools. This
approach required a significant invest-
ment in the designer’s time: to manually
optimise biquadratic filter section perfor-
mance; to write and debug the Pascal pro-
grams used and to generate simulation
netlists. filtorX, written at the University
of Toronto, is a user-programmable, com-
puter-aided filter design tool intended for
research and industrial design. It enables
designers to perform diverse functions
automatically, using one environment
from which external simulation tools can
be operated and is applied to the chal-
lenges of this project.

1 Problem Definition

CCITT compliant transmit and receive fil-
ters for integration into a telecommunica-
tions PCM-codec chip were required. CMOS
technology was to be used for voice-band
frequencies, leading to switched-capacitor
circuitry as the obvious choice. The transmit
filter, shown in Fig. 1, required 1) low-fre-
quency rejection to suppress line noise from
AC power sources and 2) attenuation of sig-
nals above 3.4kHz as an anti-aliasing filter
for the PCM encoder. The receive filter, an
anti-imaging filter which follows the D/A
converter, has the primary function of

3 0

0 50 6 0 200 3400 4600
frequency (Hz)

Fig.1. The CCITT transmit specification.
removing images above 3.4kHz and has no
stringent requirements for low-frequency
signals. This specification is plotted in Fig. 2.

v-v-
0 50 60 200 3400

frequency (Hz)

Fig.2. The CCITT receive specification.

The receive low-pass filter was to be used
to compensate for the passband distortion
caused by sinc roll-off. The desired response
for the receive filter would no longer be a flat
passband, but would now become an
inverse-sine compensated passband satisfy-

ing a period equal to the sampling rate of the
system. The overall response would then
meet the desired specifications.

The specifications for both filters are chal-
lenging and pose a number of interesting dif-
ficulties for the designer. filtorX provides a
versatile and systematic design solution.

2 filtorX

filtorX is an interactive language intended
to design, manipulate, and synthesise filters.
It is a high-level language based on C[2] and
C++[l] which uses complex numbers, and
rational functions as its basic data types. fil-
torX is contained within the fX environment
which includes an X windows[6] interface
consisting of menus and dialogue boxes, and
a real-time plotting program. filtorX can be
controlled either through the graphical inter-
face or by entering commands from the key-
board directly to the language interface.

3 Transmit filter

Fig.3. The partitions of the transmit
specification: a) lowpass; h) highpass.

into lowpass and highpass portions, we can
obtain transfer functions using the available
Remez-exchange algorithm (applicable to
either lowpass or bandpass filters). The low-
pass portion of the specification can be

Partitioning the specification: Since the entered via the ‘editLowPass’ menu selec-
transmit filter was a bandpass requiring a tion from the ‘specifications’ menu of fX
sharp cut-off, it was determined that separat- shown in Figure 4.
ing the filter into lowpass and highpass sec-
tions would be necessary to obtain
acceptable numerical accuracy. The specifi-
cation can be easily separated by assigning
the upper-stopband to a lowpass specifica-
tion with the passband extending to DC.
Similarly, the highpass filter specification
would be created by assigning the lower-
stopband of the bandpass specification and
extending the passband to infinity. The sepa-
rated specifications are displayed in Figure 3.
The passband ripple can be divided evenly
between the lowpass and highpass filters so
that the cascade does not exceed tolerable
limits.*

normalise

edltLowPass
edltBandPass

Fig.4. The ‘specifications’ main menu.

Applying filtorX to the lowpass filter:
Having partitioned the transmit specification

Creating a specification: The break-

* Although both the lowpass and highpass
filters were assigned half of the passband rip-
ple specified in this example, it may be
advantageous to partition the ripple in order
to reduce requirements of one of the filters
and, possibly, reduce the order.

1 8 1

points from Figure 3a) are entered into the
‘lowPass’ dialogue box, as shown in Figure
5, to create a spec object in filtorX. Select-

I lowPass I

--
“aWli

“oo
nullSpec
txspec

passbandEdge]3400_

passbandRipple 10.35_

stopbandEdge j4600_

minStooband!Atten I32

1owDelayEdge IO_

upperDelayEdge 13400_

delayTolerance ile-3_

Fig.5 The ‘lowPass’ dialogue box.

ing the ‘showSpec’ option displays the low-
pass specification as it would be defined in
the filtorX syntax.

spec 1owpassSpec (passband (0,
3400, 0.175) stopband (4600,
Infinity, 32))
spec 1owpassSpec (gdelayc 0,
3400, le-3 1)

Normalising a specification: Before
moving to the remez optimisation, it is
important to normalise the specification for
good numerical accuracy. This is done using
the ‘normalise option of the ‘specifications’
menu to create a normalised lowpass specifi-
cation.

Remez optimisation: The ‘Remez_Opti-
misation’ entry of the ‘rationalFunctions’
menu of Figure 6 yields a dialogue box as
shown below in Figure 7. The remez algo-
rithm can generate either equiripple or maxi-

 The dialogue box includes group-
delay information which is not appli-
cable in this example, but has been
altered from the default values to cor-
respond to the given magnitude spec-
ifications.

rationalFunctions
ShowRatfn

Classical -Fi l ters
Denormalise

Remez_Optimisation
Frequency_Scaling
Hlghpass_Transform
Bandpass_Transform

Fig.6. The ‘rationalFunctions’ main
menu.

remet _I

IoassbandTuoe I
m (shiftedMaximallyF9

upperZeros ?

lowerZeros<bandpass) O_

Fig.7. The ‘Remez_Optimisation’ dia-
logue box.

mally flat passbands (or a shifted version of a
maximally flat passband for lowpass filters)
along with an equiripple stopband; the equir-
ipple choice is selected for a minimum order
solution. A name is given to the resulting
rational function and the number of zeros in
the upper stopband (upperZeros) is entered
(the number of zeros in the lower stopband,
lowerZeros, is applicable to bandpass filters
only). Finally, the applicable specification is

fIxedZeros
LadderRatfn
1owpassRatfn
nullRatfn
ref 1zeros

nullRatfn_

selected.

Applying filtorX to the highpass filter:
The highpass partition of the original specifi-
cation is slightly more complex and requires
that the specification be entered manually.
filtorX can be operated graphically via
menus and dialogue boxes or textually
through the keyboard. Generally straight-for-
ward functions can be easily controlled
graphically whereas complex functions
require designer control. Following the for-
mat shown earlier for the ‘1owpassSpec’
specification, the highpass specification
would be entered as follows,

spec highpassspec (
stopband(O,50,25) (50,60,3OJ;pa
ssband(2OO,Infinity,O.l75))
spec highpassspec (gdelay(
2OO,Infinity, lE-3))
where the bold strings denote filtorX key-
words.

Creating a lowpass prototype: Since the
remez algorithm does not operate on high-
pass specifications, it is first necessary to cre-
ate a lowpass prototype filter. The first step is
to transform the highpass specification to an
equivalent lowpass specification using the
‘hp2lp’ entry of the ‘specifications’ menu.
The remaining steps are identical to those
followed above to obtain the lowpass filter,
1owpassRatfn. It then remains to transform
the lowpass prototype filter into a highpass
filter using the ‘Highpass-Transform’ entry
of the ‘rationalFunctions’ menu.

Cascading transfer functions: T h e
desired bandpass filter is then obtained by
cascading the lowpass and highpass filters.
The final transfer function is determined by
simply multiplying the two rational func-
tions as,

bandpass = lowpass * highpass
which is analogous to cascading the two fil-

ter sections. The resulting transmit filter is
plotted in Figure 8.

4 Receive filter

00

L
Fig.8 Attenuation response, in dB,
versus frequency, in Hz, of the trans-
mit filter. Passband focus in inset.

Transfer function optimisation: A clas-
sical elliptic rational function was used as
the seed for an optimisation to obtain the
inverse-sine compensated passband. The
optimisation requires a user defined function
as the desired response from which error val-
ues can be determined. In the passband,
inverse-sine compensation is desired so we
create a function in filtorX as

f u n c t i o n invSinc () {
i f ($l==O) {

r e t u r n 1
} else {
r e t u r n ($l*PI/fs)/sin($l*PI/

fsl

I

Note that the function returns a linear gain
value, not a deciBe1 value. The ideal for the
stopband is zero transmission necessitating
the simple function,

funct ion zero () return 0 .O
filtorX includes a least-pth optimiser[7],

which is a generalisation of the least-mean
squares algorithm with the option of specify-
ing weights to control error tolerances. The
receive filter obtained using the optimiser
and the defined functions is plotted in Figure
9.

sections.

Figure 10 features an example of pole/

L
--25 -20 x -15 -10 x -5 O !b-2

I

Fig.10. a) A pole/zero plot of a nG:rna-
lised 6th-order equiripple filter. b) The
order and Q-values of the biquadratic
sections ordered according to[9].

I 4 8 xl@3

5

Fig.9. Attenuation response, in dB,
versus frequency, in Hz, of the
inverse-sine compensated receive fil-
ter.

Obtaining biquadratic sections

Given the transmit and receive transfer
functions, it was determined that biquadratic
sections would be used to implement the
complete filter. This will facilitate the use of
multiple sampling rates for the transmit fil-
ter; the reasons for this decision will be dis-
cussed in a following section. To optimise
filter performance, it is necessary to ensure
good noise characteristics and dynamic
range for the overall structure. This is
achieved through judicious choice of pairing
of the poles and zeros of the original filters
into biquadratic sections, then by appropri-
ately ordering and scaling the biquadratic

zero pairing and biquad ordering for a sixth-
order lowpass filter.

Scaling for dynamic range: Once the
biquad sections have been ordered, their
individual gains can be set for maximal
dynamic range. This consists of setting the
peak gain of each biquad so that the compos-
ite gain at that intermediate stage of the cir-
cuit is always at the overall desired gain of
the complete filter[8]. The individual
biquads, as well as the composite results, are
plotted in Figure 11 to illustrate the concepts.

Originally, the tasks of pairing, ordering,
and scaling were performed through a com-
bination of programs written in the Pascal
programming language and by hand analysis
following standard rules of thumb[8]. This
entailed converting data and information
from the format of one program to another,
printing data out to be manipulated by the
designer then re-entering new data into the
computer. This is a tedious and time consum-
ing task to be performed once, but in the pro-

I ” biquad 2 frequency

1 0
j

biquad 1 * biquad 2 * biql

00 1 2 3 4 5
frequency

Fig.11. a) The magnitude responses of
the individual biquads of Figure10
scaled for maximum dynamic range.
b) The magnitude responses as each
biquad is added to the cascade.

cess of design, it can be repeated many times
before satisfactory results are achieved

Using filtorX, a procedure was written to
pair the poles and zeros of a higher order
function, creating biquadratic transfer func-
tions (with one linear transfer function for
odd ordered prototypes[4]). Capturing this
knowledge in filtorX eliminates the inter-
change of data between various programs,
eliminates manual intervention and emanci-
pates the designer from having to learn many
programs and languages to perform one
design.

6 Tailoring a Graphical Interface

With the addition of a graphical interface,
the actions of pole/zero pairing, biquad
ordering, and gain-scaling can be combined
behind the control of a menu selection (and a
dialogue box to allow user input to the pro-
cess). The graphical interface is part of the
fX environment and is user programmable
using a simple text file. The simplicity of
customisation allows any designer to tailor
an environment to a specific project. The
advantage is that other designers need not be
aware of the details of implementation when
they can control the functions graphically.
The menu of Figure 12 was created using 13

GenerateSwitcap

Fig.12. The biquadratic operations
menu.

lines of code while two associated dialogue
boxes (of a simple layout) also required only
13 lines.

7 Language Issues

Among the advantages of a user program-
mable language is the ability of the designer
to look into the makings of any of the given
procedures. This allows a designer to 1. learn
the syntax and coding techniques of the lan-
guage 2. note the methodology and algo-
rithms used in the given procedure and 3.
alter the procedure (in part or whole) for her
own purposes.

Because all procedures, both library and
user defined, are accessible, any user has the
entire functionality available to her. This
gives an interested designer an opportunity
to look within the operation and uncover the

details of the ‘black box’ typically presented.
A designer can confirm that procedures con-
form to manual techniques, learn different
techniques, or unearth bugs.

Having had the opportunity to see the
methodology of a procedure, the designer
can then alter the algorithm to achieve new
or different functionality. This provides the
option of implementing new ideas quickly
and efficiently: altering existing code mini-
mises the designer’s investment in learning
new coding techniques and syntax. In an
industrial environment designers can com-
plete designs quickly employing existing
techniques, later tuning the algorithm to opti-
mise performance. Alternately, filtorX can be
used to simply acquire design knowledge
from the existing procedures; this is what
makes filtorX an educational tool as well -
the property of self-documentation.

8 Practical Considerations

Following standard telecommunications
practice, a clocking rate of 128kHz was cho-
sen for the receive filter; however, because
the transmit filter is a bandpass with a pair of
zeros near 6OHz, the capacitors required
would dominate the circuit area due to the
large ratio of sampling rate to the frequency
of the zeros. Reducing the sampling rate
yields a proportional area savings. Separat-
ing the transmit filter into lowpass and high-
pass filter sections$ allows the lowpass
portion to be operated at the 128kHz sam-
pling rate and to act as an anti-aliasing filter
for the highpass filter section operating at a
lower sampling rate. A system diagram illus-
trates the structure in Fig. 13.

The lowpass partition allows the highpass
filter to be operated at a sampling rate of

$ The separation is performed for a different
purpose than that of section 2.

I I 1 J

fs=l28kHz fs=l28kHz fs=8kHz
Fig.13. A block diagram of the multi-
rate band-pass system. Sample-and-hold
locations and sampling rates are noted.

8kHz, a decimation of sixteen times, which
reduces capacitor sizes commensurately.

Originally, the designer performed the
translation of the transfer function roots to
various sampling rates manually, and simu-
lated the results to determine the accuracy.
Procedures in filtorX can perform the trans-
lation of the roots of the discrete-time trans-
fer functions enabling experimentation with
various decimation factors. The resulting
cascade of the two discrete-time transfer
functions can be determined by using a fil-
torX procedure[5].

The sampling rate of 8kHz chosen for the
highpass section of the filter may result in
some distortion of the response near 4kHz,
the theoretical maximum of this sampled
data system. The effects can be significant
and can be responsible for the filter exceed-
ing specified bounds.

Whereas WATSCAD[1 l] was originally
used to simulate the circuits at their respec-
tive sampling rates, this can now be accom-
plished with the available procedures in fil-
torX. It is possible to note the discrepancy
and correct for the error using optimisation
in filtorX. The use of WATSCAD is still nec-
essary to perform the design centering
required for the realised production circuit.

Once suitable transfer functions are
obtained, capacitor values for the actual cir-
cuits can be calculated. Since capacitor ratios
can be obtained from the biquadratic transfer
functions, it is a simple matter to create a fil-
torX procedure which does so for a given

circuit topology; using this same information
a switcap[10] netlist could also be generated.
This was done for a given biquad[3] to illus-
trate the concept and could easily be
extended to any other circuit topology.

9 Conclusions

A switched-capacitor filter design origi-
nally performed at Mite1 Semiconductor was
studied to determine the methodology fol-
lowed by the design team. It was noted that a
significant amount of effort was devoted to
writing programs (in Pascal) to perform
complex design work, to translate data from
one format to another, and to execute actions
for which there was a known design method-
ology. filtorX was designed as a user pro-
grammable filter design language which
allows designers to either write procedures
in the high-level filtorX language, or use the
provided procedures; both approaches were
applied to the challenges of the project. In
addition, the graphical capabilities were used
to add a simple interface to the user defined
actions. Since filtorX is intended for filter
design, the language is suited to powerful
expressions for filter manipulation; this was
evidenced by examples of filtorX applied to
various design problems. Its generality
allows designers to perform most work
within the filtorX environment. Coupled
with simulators like WATSCAD or SWIT-
CAP2, only the layout is left to complete the
entire design.

Acknowledgments

This project is supported by ITRC,
Micronet, and NSERC.

References

[1] M.A. Ellis, B. . The Annotated C++ Ref-
erence Manual. Addison Wesley Pub-
lishing Company, Reading,
Massachusetts, 1990.

[4]

[5]

PI

i91

B.W. Kernighan, D.M. Ritchie. The C
Programing Language. Prentice-Hall
inc., Englewood Cliffs, NJ, 1978.
K. Martin, A.S. Sedra. Strays-insensitive
switched-capacitor filters based on the
bilinear z transform. Electronics Letters.
vol. 19, pages 365-366, June, 1979.
C. Ouslis, W.M. Snelgrove, A.S. Sedra.
A Filter Designer’s Filter Design Aid: fil-
torX. Proceedings of the IEEE Interna-
tional Symposium On Circuits and
Systems, pages 376-379. IEEE inc., Sin-
gapore, June 1991.
C. Ouslis, W.M. Snelgrove, A.S. Sedra.
Multi-rate switched-capacitor filter
design with aggressive sampling-rates:
filtorX in action. Proceedings of the
IEEE International Symposium On Cir-
cuits and Systems, pages 1183-1186.
IEEE inc., San Diego, May 1992.
R.W. Scheifler, J. Getys. The X Window
System. ACM Transactions on Graphics.
No. 63, 1986.
R. Schreier. Transfer Function Design.
Master’s thesis, University of Toronto,
Department of Electrical Engineering,
Toronto, Canada, 1985.
A.S. Sedra, P.O. Brackett. Filter theory
and Design: Active and Passive. Matrix
Publishers inc., Beaverton, Oregon,
1978.
W.M. Snelgrove, A.S. Sedra. Optimiza-
tion of Dynamic Range in Cascade
Active Filters. Proceedings of the IEEE
International Symposium On Circuits
and Systems, pages 151-155. ‘IEEE inc.,
New York, May 1978.

[lo] User’s Guide for SWITCAP, Version 5.,
Columbia University, August, 1987.

[111 WATSCAD User’s Guide, University of
Waterloo

[121 J. Welsh, J. Elder. Introduction to Pascal
- Second Edition. Prentice-Hall Interna-
tional, Englewood Cliffs, New Jersey,
1982.

