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ABSTRACT

This paper studies the stability of a single-quantizer M
modulator in terms of its noise transfer function. We show that
stability is conditional upon the input signal, and give an explicit
formula for the set of all inputs which result in stable behaviour.
In addition, we compare the set of modulators stable with zero
input to the sets given by several existing rules of thumb and
find that these criteria are neither necessary, nor in some cases
sufficient, to ensure stability.

Introduction

Sigma-delta modulators are widely used to construct highly
linear analog-to-digital converters[l]. They have achieved this
prominence mainly because of their tolerance to variations in
their analog components. These converters operate by shaping
the quantization noise spectrum in such a way that the noise in
the band of interest is reduced to the desired level. The digital
output requires filtering to remove the out-of-band quantization
noise and downsampling to reduce the data rate to the Nyquist
rate.

Despite the success of this approach, the basic operation of a
sigma-delta modulator is not well understood at the theoretical
level. The most pressing theoretical issue is that of stability:
under what conditions is a sigma-delta modulator stable? This
paper details a general model of a XA modulator and then
investigates the conditions under which it remains stable.

A General Model of a Sigma-Delta Modulator

In a sigma-delta modulator with a single quantizer, the output y
may be written as

y=g@u+/a@e,

where a is the input signal, e is the error signal, and g and h are
the impulse responses of the signal and noise transfer functions.

We begin by setting G=l. This simplification is reasonable

This equation appears linear, but it is able to exactly describe the
because G is not in the loop and consequently it is not expected
to affect the stability of the modulator. We shall also focus our

nonlinear behaviour of a XA modulator because it hides the fact
that e is a function of u.

attention on modulators with single-bit quantizers, but the ideas
may be generalized to multi-bit ones.

The relationship between e and u is best expressed with a
diagram. Figure I shows one possible realization of a u
modulator with an error transfer function H and a signal transfer
function G. As shown in the diagram, the error signal is defined
as the difference between the output and the input of the
quantizer Q, and so it clearly depends on the input.

Figure 1: A block diagram of a general XA modulator
with our canonical structure.

Figure 1 is a simple way to construct a ZA modulator with a
given H, and we have found analyses based on this diagram to
be especially lucid. We therefore advocate this structure for
analysis. However, it is believed that this structure is sensitive to
errors in the H-l block, and although it is operationally
equivalent to any other structure having the same signal and
noise transfer functions, the structure of Figure 1 is not
recommended for real circuits.

The choice of error transfer function, H, essentially specifies the
modulator. Typically the designer selects H to have sufficient
attenuation in the band of interest to achieve the desired
conversion accuracy. A necessary condition for the realizability
of a ZA modulator with a specific H is that H-l be strictly
causal, or equivalently, that Ir(O)=l. This constraint is easy to
cope with, but one must resort to lengthy simulations to verify
that the modulator actually functions as desired. It is the purpose
of this paper to shed some light on this important problem.

Simplifications



Stability is Conditional upon the Input Zero-Input Stability

It is well-known that a ZA modulator may be stable for some
inputs but not for others. In this section we present a formula for
the set of all inputs which keep a modulator stable.

Firstly, with G=l and u binary* it is easy to see from Figure 1
that y=u and e=O is consistent with the operation of the
modulator provided the H-l block is initially at rest. For at time
zero, y(O)=sgn(u(O))=u(O), since u is binary, and so e(O)=O.
This means that H-l stays at rest and by induction y=u and e=O
for all time. The simplicity of this derivation is one reason why
we prefer Figure I to a more traditional diagram of a ZA
modulator.

One very important input is zero. This signal is “in the middle”
of all the islands of stability and in that sense is equally remote
from all of them. As well, any useful set of input signals would
likely be centered on zero. It is certainly the case that any useful
modulator should be stable with zero input. In this section, we
find moduIators which are stable with an input of zero.

A ZA modulator is characterized by its noise transfer function.
The set of all noise transfer functions is infinite-dimensional and
we can only look at a finite-dimensional subset. For the
purposes of this paper, it suffices to examine the three-
dimensional set: /I=(~,II~,/Q,I~~,O...). For each h chosen from
this set, we run a simulation of the modulator corresponding to
that h and determine the maximum value of e. Figures 2.3 and 4

show those modulators wherein ]]ek S 1 and those wherein

The fact that a sigma-delta modulator has an output equal to the
input under the conditions given above says that sigma-delta
modulation is idempotent. We point out this property here to
show that there exists a large class of bounded input signals
which keep the loop stable, for any H.

A time-domain analysis of Figure 1 shows that an input u will
give rise to an output y if and only if there exists e (e turns out
to be the error signal) such that

As long as the error signal remains bounded, the modulator is
essentially working as desired since e has a finite power and its
spectrum is shaped by the noise transfer function. The set of all
inputs which ensure e(n)E (-M,MJ is given by

UM = {U]U satisfies the above, and e(n) E (-M,,VJ}

The case 1I4=1 is a natural choice since one often assumes in the
linear anaIysis of a ZA modulator that e is uniformly distributed
over (-l,+lJ. In this case, condition (2) is automatically satisfied
and we have

These formulae show how stability is linked to the input. Every
modulator has inputs for which it is stable in the sense that e
remains bounded, and the set of all such inputs has a very
special structure. The set consists of non-overlapping regions
centered on every possible output pattern. These regions may
touch along their edges, or they may be isolated islands. In the
case M=l, the regions all have the same shape since the 13 @I e
term is independent of y. With the insight provided by these
formulae, the question of stability becomes a question of
whether the sets described above cover a useful range of signals
or not.

Ilen_ .C w when h3 is -0.5.0 and +0.5, respectively.

These pictures show that we are dealing with a very complicated
object. There are a few simple criteria mentioned in the literature
which are supposed to be able to predict the stability of a EA
modulator, and we shall shortly see that the simple regions they
delineate bear only a rough resemblance to the complex object
seen here.

Figure 2: Modulators with h3=-0.5 and h4_=0 which
have bounded error signals. In the dark
inner region, the error is bounded by unity.
The closed figures represent boundaries for
several stability criteria mentioned in the
literature.

’ * By binury it is meant that the signal is restricted to the two
possible outputs of the quantizer: zkl.



The Power Gain Criterion

Second-order

Figure 3: As in Figure 2, except h3 is now 0. The
standard first-order and second-order
lowpass modulators are also indicated.

Figure 4: As in Figure 2, except h3 is now +OS. This
tigure is a reflection about the vertical axis of
Figure 2.

Rules of Thumb

The brute force stability test of the previous section requires a
modulator to be simulated for infinite time, and even then only
guarantees stability if the input is zero. lt is clearly desirable to
have a shortcut for gauging the stability of a IZA modulator.
Several authors have proposed such criteria and we take this
opportunity to compare their predictions to the results of the
previous section.

Agrawal and Shenoi give an argument akin to the following [4].
Since we want the error signal to be white and uniformly
distributed over [-l,+l], it must have a power of 1/3. The power
in the output signal is 1, so it must be the case that the power
gain of the the error transfer function is less than 3. For our
parameterization of the error transfer function, this rule of thumb
corresponds to a sphere and its circular boundaries are shown on
Figures 2-4.

The Maximum Gain Criterion

Lee argues that if the gain of the error transfer function at every
frequency is Iess than 2, the resultant modulator will be
stable [3]. The boundary  of this region is an irregular curve,
possibly with linear segments, and is also plotted in Figures 2-4.

In these figures, the maximum gain criterion appears to be more
conservative than the power gain criterion, but in practice it is
the other way around. This is true because noise transfer
functions designed to satisfy the maximum gain criterion
generally have gains near 2 at most frequencies and
consequently have a power gain slightly less than 4. This is not
apparent in our figures because we are dealing with FIR error
transfer functions of extremely low order.

The $(i)~ Criterion

Anastassiou mentions that if ]]u!_ < 1, then the modulator is

guaranteed to be stable with kf=l if [2]

If we restrict the input further, the following simple argument
shows that the modulator is stable with &&l if

From Figure 1, we see that if ]iel]_ 5 1, then the magnitude of the

input to the quantizer at time n is

S glh(i)e(n -i] + iu(n)i
i=l

To ensure that ]e(n)]<l, it is sufficient to ensure this last term is
less than or equal to 2, and a trivia1 rearrangement of this
condition yields the original claim.



Once again, the curves corresponding to this test are plotted on
Figures 2-4. Their diamond shape makes them readily
identifiable.

Tire Z@(i)~ is the only criterion known by the authors to have a

sound theoretical basis. Unfortunately, it can be the most
conservative of all. As before, this is not apparent in the pictures
because we are dealing with such low-order FIR error transfer
functions.

Figures 2-4 clearly show that none of the above criteria
completely covers the set of zero-input stable modulators. In
particular, Figure 3 shows that none of the stability criteria says
that a second-order lowpass modulator, h=(l,-2,-l,O...), ought
to be stable, yet it is stable and is in fact a very popular
modulator.

A Counter-Example

Even worse than not being necessary, the power gain and
maximum gain criteria are not sufficient to ensure stability.
Figure 5 shows a close-up of a part of modulator space wherein
completely unstable moduJators pass both criteria.

0.7 ht 0.9 1.1
-0.8

Power Gain = 3Y-1.2

Figure 5: The stable region of modulator-space with
htE [0.7,1.1], hze [-1.2,-0.81, h3=0.15,
h4=-0.3 and hs._=O. Both the power gain
and the maximum gain criteria include
modulators which are unstable.

Summary

We have studied the problem of stability in a EA modulator
characterized by its error transfer function. We found that every
modulator is stable for some inputs, but not for others, and we
gave a formula for the set of all inputs which keep a particular
modulator stable. Although the formula is explicit, we have not
been able to use it to determine if a particular modulator is stable
for a useful set of input signals.

In search of a practical test for stability, we plotted the zero-input
stable modulators in a three-dimensional subspace of modulator
space. The resulting object is very complex and consequently
has dashed our hopes for finding a simple analytical test for
stability in a general moduJator.

Several rules of thumb have been mentioned in the literature, and
we compared their simple predictions to the complex object we
found. In general, the shapes given by these criteria bear little
resemblance to the shape we observe. Much of the region,
including a very popular modulator, is not covered by these
rules, and in the case of the power gain and maximum gain rules
we have found modulators which ought to be stable but are in
fact completely unstable.

We extended the rule given by Anastassiou by restricting the
input range more severely. This has yielded the most general
analytical test for stability, of which we are aware, with a sound
theoretical basis. Unfortunately, it remains overly conservative.
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