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ABSTRACT
A simple technique to compensate for DC offsets in many

analog circuits is presented. An offset-free, infinite DC gain
integrator is established in a feedback loop about the
uncompensated circuit, resulting in a high-pass system output
response. The ideal integrator is realized via the use of a counter
resulting in the cancellation of the signal’s median rather than
the usual case of the signal’s mean. Thus, the technique is
limited to applications where the signal’s median is equal to its
mean -a common occurrence in many applications.

I. INTRODUCTION
Fabrication tolerances, temperature, circuit non-linearities

and non-idealities all give rise to DC offsets which degrade the
performance of integrated analog circuits. Consequently, much
work has been devoted to alleviate this problem including:
manual trimming, AC-coupling, chopper stabilization [1] and
reset switches [2]. These techniques are either inefficient, require 
large integrated circuit area, or have limited performance. More
importantly, the latter two techniques do not compensate for
signal offset.

In situations where DC transmission is unimportant,
establishing a low-pass (integrator) feedback loop around the
circuit requiring offset compensation results in the cancellation
of both signal offset and circuit-generated offset [3-5]. For
optimal DC rejection the feedback integrator must be ideal(pole
exactly at DC, zero input offset) [2,3] and in certain
applications may require a large integration-time-constant.
Thus, realizations for this integrator in the analog domain often
require difficult design techniques. To overcome these
limitations, we propose a binary counter together with a digital-
to-analog converter (DAC) as an ideal integrator.

The use of the above digital integrator in DC offset
cancellation rather than an analog equivalent results in some
interesting properties. One such property is the fact that the
signal’s median rather than its mean is cancelled. Fortunately,
many applications have the property that the signal’s mean
equals its median. Another property is that while an offset-
compensated gain stage will have an output offset equal to the
input-offset of a comparator, an offset-compensated comparator
will ideally have a DC-free output sequence. One of the main
applications for an offset-compensated comparator is in the area
of analog adaptive filters where DC offsets are particularly
troublesome [6-10].

The outline of this paper is as follows. First, the proposed
technique is described and constraints on the input signal’s
statistics are discussed. Next, analysis is performed on an
offset-compensated gain stage showing the 3-dB cutoff
frequency is dependent on the input signal level. A design
alternative is then described to replace the DAC which could
occupy much silicon area. Finally, experimental results are
given verifying the analysis, where some approximations were
made, and demonstrating the practicality of the approach in an
analog adaptive application.

II. CIRCUIT PRINCIPLE
To explain the strategy, consider a slicer whose input is a

sinusoidal signal disturbed by a superimposed DC offset. The

output sequence will not be an accurate representation of the AC
signal, but will contain a ‘DC component exhibited by a duty
cycle other than 50%. If the slicing level were adjusted to the
overall DC leve1 the required DC-free output sequence will be
attained.

The simplest form of the proposed system, shown in Fig.
1, automatically trims the threshold, y(t). The input signal,
x(t), is periodically sliced about y(f), the comparator makes its
decision and the counter increments or decrements accordingly.
Given some elapsed time, the updated counter value will alter
the DAC state, hence the threshold level. Due to the negative
feedback, the output, i(r), will attain a steady-state condition
where the counter increments and decrements occur with equal
probability implying the input signal spends half its time
above the threshold level and half its time below. Therefore this
time varying threshold estimates the signal median and since
the median value is equal to the mean value for this sinusoidal
signal, the  compara tor  i s  “AC-coupled”,  that  is ,
y(z) = X~ +V,,.=. (y(t) becomes the signal median for an
infinite precision DAC and counter.)

2.2.  I n p u t  Signal Constraint
While for a sinusoidal signal the mean equals its median,

this is not true in general. The median of a stochastic process X
is that value x for which P(XS x) = F(X Z x) =0.5 where P(e)
denotes the probability operator. When unique, the median is
the ordinate which separates the probability density function
(PDF) into two parts of qual area. For a symmetric PDF the
mean and the median coincide [ 11]. Therefore, if a unique
median for some symmetric distribution can be obtained, this
median would be an accurate estimate of the mean. Under this
condition, the threshold approximates the mean and the system
of Fig. 1 behaves as a true “AC-coupling” network. Most
physical signals, such as speech (Fig. 2a) [12], posses this
property.

In certain cases there may exist a median interval1 such
that ~(X~x~)=P(X~x2)=0.5, and so a unique median will
not exist. When the input signal has a wide median interval, as
is the case for a square wave (Fig. 2b), the threshold could drift
between the two extremes in this interval. Whether this drift
can be tolerated depends on the application,

22. The Zdeal Integrator
For the elements shown in the dotted box of Fig. 1, the

up/down counter realizes an offset-free integrator with a pole
precisely at DC while the DAC provides an analog output. With
I(r) a square wave of unit magnitude and variable duty cycle,

u(nAT) = +zi(iAT)AT
i=O

where AT represents the sampling
scaling factor describing an M-bit

is a
block

1 Tbe ordinate interval between the smallest and largest median is referred
to as the median interval.
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such that a=-
2M

and V”$ is the full-scale DAC output. For

nAT = t and for AT small, the summation in (1) approximates
an integration,

hence an idearintegrator is obtained with an equivalent
integration-time-constant given by z = AT I a. Thus, given
that the input signal’s median equals its mean, the system
shown in Fig. 1 provides a “high-pass” response.

From above it appears that r depends on the counter size
M; hence, to realize a large time constant requires a large DAC.
Alternatively an N-bit DAC, where N<M, could be used as long
as this DAC is connected to the top N bits of the M-bit counter
sor remains a function of M to a first order. In fact, ignoring
the lower order bits of the counter can improve the steady-state
response. The choice of N depends on the maximum offset
compensation level, kVfs /2, and on the maximum tolerable

trimming step size, Vf$ I 2N. In addition, since the DAC is used
in an infinite DC gain feedback loop to trim an analog circuit,
its design specifications are not stringent. Offsets arising from
DAC non-linearity will be compensated for by the feedback
topology. The design of an area efficient DAC for trimming
purposes is currently being investigated.

2.3. Circui t  Extens ion
To highlight some aspects of the proposed scheme, the

amplifier system, Fig. 3, is presented as it is closer to a linear
system. Considering the aforementioned mean-median
condition, the slicer output in Fig. 3 can be expressed as

(3)

Choosing to approximate i_f(t)-V&[  by some constant

parameter r~’ such  tha t  li(t)-V,fcl= v’+&(t), a l lows a

simplified quasi-linear expression for (3). Minimizing the mean
square value of the error term, E(t), with respect to q’ for a
specific input level results in

This value is often called the L, norm of _?(t)-VOfc, denoted as

Analyzing the complete loop in the frequency domain,
making use of (2, 3-5), gives the following input-output
transfer-function2

Hence all DC terms are rejected at the output (high-pass
response) except for Vof,. From (4), (6) and the fact that at the

3-dB cutoff frequency -?Ac_(t) =-$$xAc_(t), it can be shown

that the cutoff frequency is

(7)

where 7 = ~~~~(t)~~.  Note that the 3-dB cutoff frequency depends

on the input signal level through ?I. This effect is important

2 It should be noted that since non-linear circuits are used, a transfer-
function in the conventional sense does not exist. However, this quasi-linear

3 Although difficult to implement small steps directly in an integrated circuit,
practical steps can be applied at an internal node (comparator bias current),

analysis provides insights into the behavior of the circuit. corresponding to a delicate trim in the input-referred offset.

since to obtain low distortion the frequency of the input signal
should be much greater than the cutoff frequency which is
variable. Thus, assuming a fixed input frequency, the circuit has
the unusuaI  attribute that lower input signal levels will produce
higher distortion. Notice also that due to the non-linearity in
(3) the cutoff frequency (7) is independent of G, unlike the case
in linear feedback control loops.

III. DESIGN ALTERNATIVE
The DAC may impose a big demand on integrated-circuit

area, therefore a simpler architecture for the feedback circuit,
Fig. 4, is proposed here. The basic circuit (dotted box in Fig. 4)
is a cascade of two integrators -an offset-free infinite DC gain
integrator (counter) and a damped integrator (charge-pump).
Unfortunately it exhibits an excess phase of 90’ which can
cause system instability in closed loop applications. The
secondary path (outside the dotted box) provides stability. To
appreciate this, consider the comparator system with the circuit
of Fig. 4, which realizes a second-order low-pass response
comprising two poles (one at DC, the other depends on
capacitor values) and a zero, in the feedback path. The output
y(n) is

y(n)= ~(~-~)+v~~~(~-~)+v~~(~-~)
where VP is the digital supply level, i(a) is the MSB of the
counter and

The maximum trimming step size is a_ = Vps( ~T+fi). Let the

comparator input be a DC level. For small trimming step sizes3
and with Cz =0 the expected step response, y(n), will be
underdamped. (The second pole (z = 7) is near DC.) Hence
overshoot (triangular in shape for this non-linear system) decay
will be negligible [13]. This (second-order) response is
unacceptable and the secondary path is useful in damping the
overshoots. An increase in the ratio CZ ICI increases the
system phase margin resulting in a more acceptable response.

Unlike in the system of Fig. 1, the circuit time constant is
not a function of counter size (only the MSB is used), but a
function of the charge-pump update frequency and a_. To
obtain a large time constant it is possible to reduce 4, even
below the Nyquist rate. Since only the DC output of the
feedback integrator is significant, aliasing is tolerable. In an
integrated-circuit device leakage currents will put a limit on the
lowest update rate possible. For this reason, a floating gate
element to replace the charge-pumps is being investigated.
Finally, it can be shown that, due to the counter’s pole at DC,
all offsets are rejected at the output, including the input-referred
offset of the secondary path.

IV. EXPERIMENTAL RESULTS

4 .1  Of f se t -Compensa ted  Ga in  S tage
Fig. 5 depicts typical transfer-functions for the amplifier

system of Fig. 3 for different input levels. Clearly the system
response is high-pass and the cutoff frequency is signal level
dependent. Experimental results for different signal levels, op-
amp gain and counter size agree within 10% of the theoretical
expression in (7) [13]. In the time domain (Fig. 6) a sinusoidal
input with DC offset comparable to signal peak was applied to
the amplifier. The AC-coupled output clearly displays an
improved signal to offset ratio.
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4.2, A n a l o g  A d a p t i v e  F i l t e r  A p p l i c a t i o n
Our main purpose for developing the circuits proposed here

is the implementation of the least mean square algorithm (LMS)
in an analog adaptive filter. An accurate implementation of the
algorithm is sometimes difficult, thus simplified versions [10],
[14] are often realized. The simplest version is the sign-sign
update equation for the ith coefficient, We:

wi(r)=~~~~g~[e(?)~gn[gi(~)]d~ (8)
where e(r) is an error signal, p is a small step size which
controls the rate of convergence, gi(r) denotes the ith gradient

h(r)signal, -
hi(t) ’

and y(t) is the filter’s output.

The presence of DC offsets arising from device mismatches
and non-idealities affect the LMS algorithm in such a way that
the filter settles at a non-optima1 state, exhibiting an excess
mean-square-error (MSE) after convergence [8], [10]. The circuits
discussed here can be used to implement (8) while compensating
for DC offsets as depicted in Fig. 7 (note the hardware
simplicity). The block LPF is either the counter/DAC ideal
integrator or the second-order low-pass circuit of Fig. 4, the
multiplier is an XOR gate.

Experimental results are given for the LPF of Fig. 4.
(Similar results were obtained for the counter/DAC LPF.) The
gradient and error signals were taken directly from an integrated
third-order IIR programmable filter [15]. These had offset levels
of about 5OmV, 50% of signal levels. A model matching set-up
was configured and two coefficients (zeros) from a total of six
were adapted. Without  offset compensation for the comparators
and input signals (nodes 1 and 2 tied to ground, Fig. 7) the
adaptive filter attained the state shown in Fig. 8a. Clearly,
excess MSE due entirely to signal offset and comparator input
offset is demonstrated. With full compensation a considerable
improvement in the convergence of the sign-sign algorithm was
obtained, Fig. 8b, illustrating the benefit of the proposed
circuits.

V. CONCLUSIONS
An ideal integrator to trim analog circuits was presented

and its applicability in realizing an “AC-coupled” comparator
was demonstrated. Two topologies for the LPF were proposed
and the dynamics of each were briefly discussed. The benefit of
the proposed scheme in the important area of analog adaptive
filters was also illustrated. The next step would be to quantify
the improvement obtainable in an integrated system.
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Fig. 1. The DC-compensated comparator loop.
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Fig. 2. Example of two possible input signal statistics.

Fig. 3. The AC-coupled amplifier loop.
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