
        
DC Offset Performance of Four LMS Adaptive Algorithms

Abstract

The effects of DC offsets on four variations of the stochastic gradient algorithm are

analyzed to determine the most appropriate algorithm for hardware implementation. The

output mean squared error (MSE) performance in the presence of DC offsets is evaluated

and compared with computer simulations for each of the algorithms assuming a Gaussian

input distribution. 

I. Introduction

The essence of an adaptive filter is the implementation of the algorithm that controls the

filter coefficients. The four most common algorithms, which have been investigated extensively in

the technical literature [1-5], in decreasing implementation complexity are: the least-mean-square

(LMS) algorithm, the sign-data (SD-LMS), the sign-error (SE-LMS) and the sign-sign (SS-LMS)

algorithms. It has been shown that all variants of the LMS algorithm converge only if the input

signal is sufficiently exciting [4] and that even when sufficiency conditions are met, the SS-LMS

and the SD-LMS algorithms can diverge due to gradient signal misalignment [4-6]. In addition, it

has been shown that while both the LMS and the SD-LMS algorithms ideally achieve zero MSE,

the SE-LMS and the SS-LMS algorithms experience finite minimum MSE [7] due to the fact that

the step size for the coefficients does not go to zero.

When implementing analog adaptive filters, the effect of DC offsets is an important issue.

Although some publications have treated DC offsets in adaptive filters [2], [8-11], few results are

available on the effects of all sources of DC offsets on all four variations of the LMS algorithm.

This paper investigates the performance of these algorithms from a DC offset point of view. To
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keep the analysis simple and tractable, discrete-time systems are analyzed and an adaptive linear

combiner is studied. Simulation results are presented showing close agreement with the analytical

work. Although this dc analysis is somewhat tedious, the results give insight as to the behavior of

the algorithms as function of the unavoidable offset sources that would appear in any analog

system. Specifically, the individual contribution of various offsets for a particular algorithm can

be determined and reasons for the widely varying DC offset behaviours of the various algorthms

are justified.

II. Problem Formulation

For an adaptive linear combiner, as shown in Fig. 1, the output at time index k is given by

 where  is the ith coefficient value and  is the ith gradient signal as well as the

ith input signal. The error signal is

(1)

where  is the desired response and w* is a vector of optimal coefficients. Defining  to be the

present coefficient estimate, or mathematically

 (2)

then (1) can be re-written as

 (3)

To allow a solution of otherwise very complicated expressions, it is also assumed that the gradient

signals and the filter coefficient estimates are statistically independent, thus

(4)

where E[•] represents the expectation operator. We also define  and 

yk xk
Twk= wi k( ) xi k( )

e k( ) δ k( ) y k( )–= xk
T w* wk–[ ]=

δ k( ) ck

ck w* wk–=

e k( ) xk
Tck=

E xk
Tck[ ] E xk

T[ ] E ck[ ]=

σx
2 E xi

2 k( )[ ]≡ σe
2 E e2 k( )[ ]≡
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to be the mean-squared value of the gradient and the error signals, respectively. The quantity 

represents the filter output MSE and is the performance measure to be evaluated. 

The LMS algorithm, depicted in Fig. 2 for updating the ith coefficient, with modeled DC

offsets inserted at appropriate locations using (2) is given by,

LMS (5)

The vectors  and  represent the unwanted DC offsets on each of the gradient signals and the

equivalent DC offsets at the input of the accumulator (integrator) and at the output of the

multiplier respectively. The term  represents the unwanted DC offset on the error signal and 

is a small step size that governs the adaptation rate. Similarly for the three other variants of the

LMS algorithm we have:

SD-LMS (6)

SE-LMS (7)

SS-LMS (8)

III. The LMS Algorithm

Taking the expectation of both sides of (5) we obtain

(9)

At steady-state (i.e. as ), we have . Using this fact together with (3-4),

defining  and dropping the time index k (for mathematical convenience), (9), for a

zero-mean input distribution simplifies to

 (10)

σe
2

ck 1+ ck 2µ xk mx+( ) e k( ) me+( ) m )+(–=

mx m

me µ

ck 1+ ck 2µ xk mx+[ ] e k( ) me+( ) m+sgn( )–=

ck 1+ ck 2µ xk mx+( ) e k( ) me+[ ]sgn m )+(–=

ck 1+ ck 2µ xk mx+[ ]sgn e k( ) me+[ ]sgn m )+(–=

E ck 1+[ ] E ck[ ] 2µE xk mx+( ) e k( ) me+( ) m+[ ]–=

k ∞→ E ck 1+[ ] E ck[ ]=

R E xk xk
T[ ]≡

E cT[ ] m memx+( )T R T––=
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To solve for the residual MSE due to offsets, we take the mean-squared value of both sides of (5)

(11)

Noting that at steady-state , substituting (3) and (4) into (11) and

dropping the time index as before, after some mathematical manipulation it can be shown that the

approximation for small  (by dropping  terms) governs the expression for the excess MSE at

steady-state which is

. (12)

The result in (12) shows that the excess MSE is inversely proportional to input signal power

through the  term and is directly sensitive to all offset sources. It should be noted that in

analog implementations the DC offset at the output of the multiplier and at the input to the

integrator, , would typically dominate. 

IV. The Sign-Data LMS Algorithm

Taking the expectation of both sides of (6), using (3-4) and simplifying as before, for a

zero-mean Gaussian noise input with variance  we have

(13)

where it can be shown from [12] and from Price’s Theorem [13] respectively that

(14)

(15)

E ck 1+
T ck 1+[ ] E ck

Tck[ ] 4µE ck
T xk mx+( ) e k( ) me+( ) m+( )[ ]–=

4µ2E xk mx+( ) e k( ) me+( ) m+( )T xk mx+( ) e k( ) me+( ) m+( )[ ]+

E ck 1+
T ck 1+[ ] E ck

Tck[ ]=

µ µ2

σe
2 m memx+( )T R T– m memx+( )≈

R T–

m

σx
2 Rii=

E cT[ ] m mekmx+( )T RMX
T––=

kmxi
E≡ xi mxi+[ ]sgn[ ] erf
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2σx
2

-------------=

Rmxi j,
E≡ xi mxi+[ ] x j

T
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------ 2

π
---e mxi

2 2σx
2⁄– Ri j,=
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Taking the mean-squared value of both sides of (6) and simplifying as before yields

(16)

Using (3) and (15), the last term in (16) for Gaussian white noise reduces to

(17)

where  and  represents the variance of . Making use of the assumption in

(4), for Gaussian white noise one can derive

(18)

Assuming that the mean-squared value of all the coefficient estimates are equivalent, or

mathematically,  and that (17) and (18) are valid for colored Gaussian inputs,

making use of (16-18) we obtain 

(19)

The above assumptions are not true in general but as will be seen from the simulation results, their

use yields satisfactory results. The expression in (19) shows that the performance of the SD-LMS

algorithm is similar to the LMS algorithm from a DC offset point of view; the dominant offset

terms appear explicitly in the numerator. The difference here is that the excess MSE is a weak

function of the input signal power1 for small . This effect is a consequence of the slicing

operation which results in the loss of information as to signal amplitude and would be similarly

manifested for arbitrary input distributions.

1. Signal power, , appears both in the numerator (via ) and denominator of (19).
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2
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V. The Sign-Error LMS Algorithm

Assuming  has a zero-mean Gaussian distribution at steady-state2, taking the

expectation of both sides of (7) and simplifying as before it can be shown that

(20)

Taking the mean-squared value of both sides of (7) and simplifying as before gives

(21)

Defining  to be a vector representing the AC component of the filter coefficient estimates, or

mathematically, , and substituting into the last term in (21) yields

(22)

The last term in (22) measures the correlation of  with  and is approximated to

zero since for slow adaptation  is small. Thus, (22) with (20) provide a non-linear function in

 that describes the MSE as function of  and the interfering offsets. Although (22) is the main

result for this section, it is also of interest to solve (22) for the limiting case of :

2. This assumption becomes better for small  for which the AC component of the coefficients is small and 
thus the distribution of the error signal follows that of the input.

e k( )

µ
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2
π
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(23)

Observe that the numerator of (23) consists of a typically smaller offset term (comparator input

offset) than the denominator which consists of the dominant offset term . Thus in comparison

with (12) or (19) one expects lower MSE for (23); especially when  is minimized which can be

achieved using the technique in [14]. In fact, in the limiting case of  it can be shown that

the MSE is shaped by  and therefore achieves better MSE performance for small  than (12) or

(19). However it can also be shown from (22) that in the absence of DC offsets3 the SE-LMS

algorithm, unlike the LMS or the SD-LMS algorithm, will sustain a finite excess MSE that

depends on .

It is also of interest to note that the degrading effects of DC offsets can be alleviated by

passing the error signal through a high gain stage prior to coefficient computation [2]. This elegant

solution is intuitively simple but is practically difficult to achieve in high-frequency applications.

It is instructive to point out that the SE-LMS algorithm inherently provides this high gain and

although non-linear is frequency independent.

VI. The Sign-Sign LMS Algorithm

Assuming  is Gaussian, taking the expectation of both sides of (8), making use of the

work in [15] and the results of the previous sections, we have the following approximation4

. (24)

3. Not the case for analog circuits.
4. Although we cannot rigorously derive the result of (24) as yet, we believe the approximation models the 
actual result. The validity thereof, can be noted from the previous results and the simulations.
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Taking the mean-squared value of both sides of (8) one obtains

(25)

Using [15], the procedure in obtaining (17-19), (24) and substituting (24) into (25) yields

(26)

Again, a non-linear function in  is obtained that can be solved for the limiting case of small  

(27)

The result shows that the SS-LMS algorithm in the presence of DC offsets has better excess MSE

performance than the LMS algorithm or the SD-LMS algorithm for the same reasons elicited as

for the SE-LMS algorithm. Notice in (27), as noted in (19), the predicted MSE is weakly

dependent on the input signal power, . As well, it can be shown from (26) that for the case

 or in the absence of DC offsets, the SS-LMS algorithm behaves like the SE-LMS

algorithm.

VII. Numerical Verification

A 5-tap adaptive linear combiner configured as a model matching system was investigated

to compare its simulated performance with the analytical predictions. A first-order lowpass filter

was placed before the adaptive filter to allow the variation in signal statistics via  where 
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(28)

The input distribution, , was Gaussian with zero mean and variance . The results of the

simulations and the predicted analytical calculations are provided in Fig. 3. The bullets depict the

predicted MSE calculated from equations (12), (19), (22) and (26) and the simulated MSE at the

respective value for . A non-linear equation solver [16] was used to solve (22) and (26). The

solid and dotted lines connect the bullets obtained from the analytical expressions and the

simulations respectively to exemplify the behavior of the MSE as function of . The offset levels

for the cases in Figs 3(a-c) are:

 The offset levels for the case in Fig. 3d are:

Fig. 3a shows the case for a Gaussian white noise input. Figs. 3(b-d) show the results for more

colored Gaussian inputs as given by the parameter . Fig. 3c, unlike Figs. 3(a,b,d), shows the

results when the input power is smaller than unity. Observe that in this case (compared with Fig.

3b) the excess MSE using the LMS algorithm is more sensitive to input power than either the SD-

LMS or the SS-LMS algorithms as was predicted. For the case of Fig. 3d, the LMS algorithm

showed evidence of divergence for the case  hence this point is omitted from the plot.

The results of Fig. 3 verify the derived analytical expressions given by (12), (19), (22) and (26) for

arbitrary offset levels and arbitrary input statistics. Specifically, note that the SE-LMS and the SS-

U z( ) 1

1 αz
1–

–
--------------------G z( )=

g k( ) σx
2

µ

µ

me 0.01=

mx
T 0.02 0.01– 0.03– 0.005– 0.07=

mT
0.08 0.01 0.05– 0.02– 0.06–=

mx
T 0.02 0.0 0.07– 0.05 0.008–=

me 0.02=

mT 0.03 0.1– 0.005 0.08– 0.06–=

α

µ 0.01=
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LMS algorithms are shaped by  and that the limiting cases for  expressed by (23) and (27)

compare well with simulated data. Table 1 summarizes the results presented and the issues

discussed in this paper.

Conclusions

We have analyzed and provided analytical expressions for the performance of four

coefficient update algorithms for analog adaptive filters from an offset point of view. We have

found that both the SE-LMS and the SS-LMS algorithms achieve better MSE performance when

DC offsets are present; especially when integrator offsets, which dominate in a practical analog

system, are unavoidable and in high frequency applications where simply passing the error signal

through a gain stage to reduce the effects of DC offsets [2] is impractical. Having lower offset

sensitivity, minimal circuit complexity combined with the fact that the SD-LMS and the SS-LMS

algorithms can diverge due to gradient signal misalignment [5], we conclude that the SE-LMS

algorithm is the best choice for practical high-frequency analog adaptive filters.
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Table 1: Result Summary

Test Case LMS SD-LMS SE-LMS SS-LMS

input power no effect no effect

no offsets
for for 

 

all offsets

 weakly depends on ; for   strongly depends on ; for 

  is scaled by 

algorithm
circuit 

complexity

1 multiplier/tap
1 integrator/tap

1 slicer/tap
1 trivial multi-

plier/tap
1 integrator/tap

1 trivial multi-
plier/tap

1 integrator/tap
1 slicer/filter

1 slicer/tap
1 XOR gate/tap
1 counter/tap
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1 slicer/filter

convergence
no gradient
misalignment

gradients
misaligned

no gradient
misalignment

gradients
misaligned

σe
2

1 σx
2⁄∝ σ e

2
1 ln σx

2[ ]⁄∝

σe
2

0→
µ 0→

σe
2

0→
µ 0→ σe

2 µ2σx
4∝ σ e

2 µ2σx
2∝

LMS

SD-LMS

σe
2 m memx+( )T m memx+( )∝

σe
2 m mekmx+( )T m mekmx+( )∝

σe
2 µ µ 0→

σe
2 me

2

ln m mx+( )T m mx+( )[ ]
------------------------------------------------------------∝

SE-LMS

SS-LMS

σe
2 me

2

ln mTm e
mxi

2 σx
2⁄

⁄

-------------------------------------------∝

σe
2 µ µ 0→

me 0= σe
2 mTm∝ σe

2 mTm∝

SE-LMS

σe
2 µ2 mTm mx

Tmx,( )
2

∝

SS-LMS

σe
2 µ2 mTm e

mxi
2 σx

2⁄
, 

 
2

∝

σe
2 µ2
IEEE ISCAS’94 August 20, 1997 12



Fig. 1. A general adaptive linear combiner.

Fig. 2. Details of the LMS update circuitry showing DC offset sources.
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Fig. 3(a-d). Theoretical (dotted lines) and simulated (solid lines) MSE as function of , different
offsets and different signal statistics for the four LMS based algorithms.
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