PROCEEDINGS -

OF THE

1980 INTERNATIONAL CDNFERENCE

'PARALLEL PROCESSING '

VASTOR: A Microprocessor Based Associative
Vector Processor for Small Scale Applications#

W.M. Loucks, W.M. Snelgrove and S.G. Zaky

Dept. of Electrical Engineering,
University of Toronto

ABSTRACT

associative processor built

A word-parallel, bit-serial
microprocessors is introduced. It is intended as
computer systems. Data
vectors.

and word-length of these vectors is stored in
control the storage and processing array.

I. INTRODUCTION

The parallel processing capabilities of an
associative processor are highly attractive in
many non-numeric applications. Cperations such
as searching and sorting are inherently parallel
in nature, since they may be regarded as a se-
quence of basic operations such as compare,
shift, and mark performed in parallel on a large
number of operands. Many organizations have
been proposed for associative processors [8,
10]. Of these, the word-parallel, bit-serial,
or vertical [9], organization has received con-
siderable attention. This is due to the fact
that the bit-serial organization leads to a con-
siderable simplification of the hardware in com-
parison with fully parallel schemes.

Because of the hardware intensive nature of
associative processors, they tend to be economi-
cally viable only in large, high capital cost
systems. The purpose of this paper is to intro-
duce an associative processor that is meant for
relatively small applications. It is based on
an array of commercially available 1-bit wide
microprocessors.. Machine organization is word-
parallel, bit-serial. Data is stored and pro-
cessed in the form of vectors consisting of a
fixed number of elements. The machine has been
dubbed VASTOR for Vector Associative Store TO-
Ronto.

VASTOR is intended as a special purpose
processor to be attached to a conventional
mini-computer system. In what follows, the min-
icomputer will be referred to as the host. In
such a system, VASTOR would handle those parts
of the work load that can benefit from its asso-
ciative and vector capabilities.
tive processors in this

manner has been sug-

¥ This work was partially supported by the
Natural Sciences and Engineering Research
Council of Canada under research grant #A8994

CH1569-3/80/0000-0037$00. 75 © 1980 IEEE

Use of assocla-

a small general-purpose computer

37

around an array of 1-bit wide
a low-cost auxiliary processor in small scale

are organized in an array of fixed number of elements, variable word-length
Processing proceeds in parallel on all elements of a vector.

Information about the location
which is used to

gested by many authors, e.g. [5]. Also many po-
tential applications have been studied [3]. The
main feature of VASTOR is that it represents an
associative structure and its implementation
that are economically viable in a minicomputer
system environment . A prototype processor has
been constructed and tested.

The main constraints in the design of VA-
STOR were 1low cost and modularity. This re-
quired that readily available components be
used, that internal communication and control be
kept simple, and that VASTOR should not overload
the computer to which it is attached. Modular-
ity also meant that backplane interconnections
between modules should be kept simple and easily
expandable.

The VASTOR processor, figure 1, consists of
two main components, namely the processing array
and the controller. The processing array con-
tains all the storage and processing elements of
VASTOR. The controller translates high level
commands received from a scalar machine =the
host- into sequences of control signals for the
processing array. This paper presents a practi-
cal implementation of the array and its control-
ler, and describes input/output transfers bet-
ween the array and the host computer. Algor-
ithms that may be implemented on vector oriented
machines such as VASTOR are readily found in the
literature [2, 3 and 7).

IT. MACHINE STRUCTURE

The organization of the VASTOR array is il-
lustrated in figures 2 and 3. The storage sec-
tion in the array is an n-word memory, with a
word length of several kilobits. Operations are
performed on vectors of data elements, figure 2,
when the elements of a given vector occupy the
same bit positions in all words. While the num-
ber of bits per element is the same for all ele-
ments of a given vector, it may vary from one
vector to another. A 1-bit wide processing ele-
ment PE is a part of every word. Shift-register
SH provides the main mechanism for data transfer

among VASTOR words, as well as between the array
and the outside world.

VASTOR s architecture, depicted in figures
2 and 3, has the properties both of an associa-
tive processor and of an array processor, in the
sense in which those terms are defined in [10].
It is an SIMD machine, as are both of these
types (note that opcode lines are shared by all
cells in figure 2). Each cell contains a sto-
rage element which may be used to mark indivi-
dual words. The 1/0 structure enables the host
to read from and write to marked words in the
memory. This allows VASTOR to be used as a con-
tent-addressable memory for the host machine.
Each cell alsoc has the ability to perform logi-
cal and arithmetic operations on its memory un-
der the control of the mark bit, so that one may
operate (in parallel) on all data elements sa-
tisfying some arbitrary condition. The above
features give VASTOR the properties of an asso-
ciative processor.

On the other hand, ocne may leave all words
selected and use VASTOR as an array of proces-

sors. Its I/0 structure allows large quantities
of data to be transferred to and from the host
machine via the parallel port on the right of
figure 2. 1/0 data transfer rate ranges from

0.5 to 8 Mbit/s, as will be discussed in section
V. Each cell C can perform data manipulation
operations on one word of the memory M. From
this point of view, VASTOR is an array proces-
sor. Inter-processor communication within the
array enables handling of data organized in the
form of a one-dimensional array, hence the word
"yvector" in the machine’s name. Thus associa-
tive operations may be seen as a particular case
of array processing, in which a preliminary com-
putation is used to select data in certain cells
for further processing or output to the host ma-
chine.

VASTOR operations are essentially word-par-
allel, bit-serial. The major differences bet-
ween VASTOR and other serial machines, e.g.
STARAN [10], stem from pragmatic considerations:
component cost and backplane complexity.
STARAN ‘s memory is multi-dimensional: data may
be accessed either by row (horizontally) or co=-
lumn (vertically) of a 256 row by 256 column me-
mory array. These two modes of access involve a
relatively complex interconnection network,
which is referred to as a "flip network". Such
a network is not required in VASTOR.

VASTOR uses 256 conventional 1024 by 1 bit
random-access memories, all driven by the same
address lines (cf. figure 2). Operations can be
performed only on columns of memory. Because of
this it is a "vertical" computer similar to that
proposed by Shooman [9]. The I/0 structure has
been designed to compensate for the resulting
difficulty in communicating with the "horizon-
tal" host machine.

When the number of elements
tor is greater than the number of
lumn of memory, operations can be carried out on
"sub-vectors" of 256 elements each. This com-
promise exists in Shooman’s machine also.

As mentioned earlier, development of the
structure of VASTOR has been heavily influenced

in a data vec-
cells in a co=-

38

by interconnection considerations. The array
has been designed to use only "daisy-chained"
and "bused" connections between circuit boards.
This allows new boards to be added at any time
to increase the size of the array with minimal
modifications to the existing backplane. The
structure is also well suited to large-scale
integration because of the small number of in-
terconnections required between modules.

The main implication of the above restric-
tion on backplane complexity is that it limits
the inter-word and associative facilities that
may be used. Hence, inter-word communication is
accomplished via a shift-register, which in-
volves a daisy-chain connection between circuit
boards for both data and control information.
Moreover, a single bused connection common to
all words of the array combined with an analogue
to digital converter (not shown) are used to
provide limited accuracy associative testing.

The structure of VASTOR may be discussed in
terms of three separate features: the intra-
word storage and computation, the inter-word
communication, and the associative testing capa-
bilities. Each of these features is discussed
briefly below.

2,1 INTRA-WORD FACILITIES
Figure 4 shows the components of a VASTOR
word: two kinds of storage, a 1-bit processor

and one bit of a shift register.

The random-access memory referred to in the
figure as WK constitutes the ‘working store’.
Data are taken from this memory and returned to
it during computation. A second memory, refer-
red to as BK, for backing store, is a serial me-
mory. Its contents are swapped with the contents

of the working store in pages containing 256
bits per word. One more bit of storage 1is
available for each word in its part of the

shift-register SH. This may be used for tempo-
rary storage of operands. It should be noted
that the intra-word facilities can be expanded
through the use of the 1line marked ‘B” on the
figure.

The 1-bit processing element PE with which
VASTOR has been implemented is the Industrial
Control Unit - Motorola MC14500B. It performs a
limited set of primitive operations on external
data and a 1-bit internal accumulator called RR
(the result register). Another internal regis-
ter, output enable or OEN, contains a mask which
is wused to enable selective write-back into
either the working or the backing store. The
collection of the OEN registers in all words
constitutes the output enable vector.

2.2 INTER-WORD COMMUNICATION

The shifter SH is
inter-word communication.

the primary medium for
It is the only ma-

chine feature that defines any order to the
words. The shift-register SH is divided into
8-bit segments as shown in figure 5. Each seg-

ment of SH has two parallel bidirectional ports
A and B. The B port is connected to one "phrase"

of eight VASTOR words.The A ports of all seg-
ments are connected together to form an 8-bit
1/0 bus.

Two multiplexers CIRC and SHMODE connect

the serial inputs of the segments of SH to any
of a number of sources. This allows data trans-
fer between the shifter and VASTOR words to take
place in one of the following modes.

T VASTOR to shifter -
through the B port:
source of data may be
element PE, the working
the backing store BK.

parallel mode
in this mode the
the processing
store WK or

2, VASTOR to shifter - serial mode
through the SI port: in this mode up
to eight bits of data may be loaded
from any word of a phrase into the
shifter segment. This operation takes
place in parallel for all phrases.

[9%]

Shifter to VASTOR - parallel mode:
VASTOR words may be loaded in parallel
from port B of the shifter SH via the
processing element PE.

4, Shifter to VASTOR - serial mode: 8
bits of data can be moved serially
from a shifter segment to any word in
the corresponding phrase. This is ac-
complished via the combined use of the
output enable vector CEN and the abil-
ity to circulate data within each of
the 8-bit segments of SH.

We should note that in the two serial modes

2 and 4, only one word of each phrase is in-
volved in data transfer. This reduces the par-
allelism in the array by a factor of eight.

However, the serial modes are necessary to sim-
plify byte-oriented data transfer between VASTOR
and the host machine, as will be discussed in
section V.

2.3 ASSOCIATIVE TESTS

All VASTOR operations may leave a result in
register RR of the processing element. Contri-
butions from all RR registers are summed, in an
analogue fashion, onto a single line. This is a
simple scheme to obtain a limited accuracy esti-
mate of the number of responders S, i.e. the
number of words with RR=1, The most useful va-
lues for this number are zero, one and more than
one. A simple analogue to digital converter is
used to extract this information from the ana-
logue sum.

III. EXAMPLES OF VECTOR OPERATIONS

This section presents two examples of vec-
tor operations in order to illustrate-the capa-
bilities of the VASTOR array.. In the first ex-
ample vector addition is described. The second

39

example deals with an associative search for the
largest element of a vector.

Let A and B be two vectors that are resi-
dent in the VASTOR array, Figure 6a. It is re-
quired to obtain a third vector R which repre-
sents the arithmetic sum of A and B. Informa-

tion regarding the two vectors A and B is stored
in a table in the controller. The table stores
the relevant parameters for each vector, e.g.
starting address in the array, number of ele-
ments, number of bits, ete. The ADD operation
is initiated by the host computer by sending a
high level command specifying the function to be
performed and the two operands A and B. It is
not necessary for the host computer to specify
such details as the addresses of the operands,
the number of elements or the element lengths.
Operands are identified by means of pointers
into the operand table stored in the controller.
When the operation is completed, the controller
returns to the host the value of the pointer
corresponding to the result vector R.

Addition is performed in a bit serial, word
parallel manner. The sequence of operations is
given in Figure 6b. As indicated in the figure,
control of the seguence of operations and ad-
dress calculations are performed in the control-
ler, while vector operations are performed in
the array. The optional masking operation at
the beginning of the sequence disables those
words of the array for which the mask contains
"O"s. This may be needed when the vectors in-
volved contain fewer elements than the number of
VASTOR words. The mask used in such operations
is set up at the time vectors A and B are
created.

An implementation of the binary search al-
gorithm [3] for positive or unsigned integers is
given in Figure 6c. In this case the elements
of the vector are scanned starting with the MSB.
A one-bit wide vector TEMP masks out the words
that have been rejected at any stage of the
search. The associative sum S is used to deter-
mine the first bit position where one element of
TEMP contains a "1" while all other elements
contain "O"s. At the end of the search TEMP
contains "1"(s) in the word(s) containing the
largest element(s).

The above examples illustrate the operation
of VASTOR on short vectors with all bits conti-
guous in fields. When there are more elements
in a vector than words in the array, the vector
may be broken into several subvectors. Each
subvector is operated on independently. It is
also possible that the elements of a vector may
occupy two or more non-contiguous fields in a

word. In this case the controller repeats the
operations on the different fields of the vec-
tor.

IV. THE CONTROLLER

The function of the controller is to reduce the
control overhead required from the host machine
to drive VASTOR. 1In order to keep the VASTOR
array continuously active, 50 control bits are

needed every microsecond. That is, a control
bandwidth of 50 bits/microsecond must be sup-
ported. This rate exceeds the bandwidth of the
entire PDP-11 UNIBUS. Hence, it must be reduced
to a level which does not prevent the host from
performing operations not related to VASTOR.
The controller receives high level commands from
the host machine, requiring a much lower control
bandwidth. These commands are then translated
into the sequences of control signals needed to
drive the VASTOR array.

The complexity of the commands that have to
be interpreted by the controller is represented
by the examples given in section II1. In order
to support such operations, a hierarchical ap-
proach has been adopted. Each level in the
hierarchy serves to reduce the bandwidth re-
quired from the higher levels. Furthermore, in-
terpretation of high level commands has been
made relatively simple because of the use of
well defined interfaces between various levels.

The hierarchical approach 1led to the con-
troller organization shown in Figure 7. It con-
sists of three distinct units. The microcon-~
troller which performs low level looping control
operations, the buffer memory which is used as a
communications medium, and the microprocessor
which is responsible for interpreting high level
commands received from the host and for space
allocation within the VASTOK array. As such,
the microprocessor performs functions similar to
that of the "interpreter" in ECAM [1]. The mi-
crocontroller corresponds to the iteration con-
trol logic in ECAM. The three subsystems of VA~
STOR “s controller are discussed briefly below.

4.1 THE MICROCCNTROLLER

UC serves to remove
its output, the array

The microcontroller
some of the redundancy at
control lines, in order to reduce the bandwidth
required at its input. Its sophistication, and
therefore cost, can be selected to provide al-
most any desired bandwidth at its input. We
have chosen to implement a device that executes

sequences of microcode stored in an internal
Read OUnly Memory, with primitive branching and
looping capability. Input commands to the mi-

erocontroller come from a buffer memory M which,
in turn, is filled by the microprocessor UP.

Linear microcode sequencing provides a
large reduction in the control bandwidth. Hence,
it was adopted as the main sequencing mechanism
in the microcontroller. The starting address
for a given microcode sequence is loaded from
the buffer M. Since data can be made to appear
in the VASTOR array in fields of consecutive lo-
cations, further compression of the control in-
formation is obtained with a simple loop coun-
ter/index register. This counter is decremented
and tested to control microprogram loops. It
also serves as an index register to modify the
addresses transmitted by the controller to the
array memory.

Some further control bandwidth compression
is obtained by introducing a data-dependent
branch. The associative sum of responders is

40

compared to a reference in the microcode. One of
two branch addresses is then selected from the
buffer M.

4,2 THE BUFFER MEMORY

The buffer memory is divided into sixteen
separate task control blocks. These blocks are
filled by the microprocessor and interpreted by
the microcontroller. Whenever the microcontrol-
ler finishes a task it interrupts the micropro-
cessor to request the address of the next con-
trol block. Task control blocks contain up to
26 bytes of information. This includes starting
and loop control information for the microcode
of the microcontroller. It also includes speci-
fications for the operands in the VASTOR array.

4.3 THE MICROPROCESSOR
Controller algorithms represented by one
control block in the buffer memory take from 1
to several hundred microseconds to complete and
to interrupt the microprocessor. These inter-
rupts are usually quite simple to service but
would be uneconomically frequent for the host
machine. The microprocessor is therefore in-
cluded to provide further compression of the
control bandwidth. It simplifies the interfac-
ing software by translating high~level opera-
tions into sequences of microcontroller tasks.
In addition to sequencing control, the mi-
croprocessor performs the storage management
function. This includes allocating and freeing
fields of storage, garbage collection, paging
variables into the working store from the back-
ing store, allowing the widths of elements (e.g.
integers) to expand and contract, and segmenting

vectors longer than the VASTOR array into man-
ageable components.
V. INPUT/OUTPUT
Data transfer between VASTOR and the host

machine is generally difficult because of the
incompatibility of the addressable wunits in the
two machines. While a host machine generally
obtains all bits of a single element of a vector
with one reference to its memory, VASTOR obtains
one bit of each element. The transposition re-
quired to match the two machines is the source
of the difficulty.

The simplest type of vector to transfer is

a boolean vector, which is only one bit wide,
figure 8a. In order to transfer such a vector
from the host into the VASTOR array, its ele-
ments may be shifted serially by bit into the

shift register SH. This is followed by a trans-
fer from SH to a column of WK using the parallel
mode (mode 3, section 2.2). If elements of the
boolean vector are packed into bytes in the host
machine, as is the case in some versions of AFL,
shift register SH may be loaded serially by byte
through its ‘A° port. In the current implemen-

tation, data rates for the bit-serial and byte-
serial modes are 1 Mbit/s and 1 Mbyte/s respec=-
tively.

Consider now the case where data is pre-
sented to VASTOR so that some number of consecu-
tive bits must be loaded into a single word,
figure 8b. This may be achieved by first load-
ing register RR of the ICU from the CONST line,
figure Y4, and then storing the content of RR in
the enabled word. Due to that two-step sequence
and the fact that only one word is enabled at a
time, the transfer rate is limited to 500
Kbits/s.

The phrase structure may be used to in-
crease the transfer rate of byte-organized data,
as shown in figure 8c. This corresponds to mode
4 of section 2.2. The data rate achievable in
this case is 2.5 Mbits/s. 1In this approach con-
secutive words from the host machine are not
loaded into consecutive words of VASTOR.
Rather, they are loaded into the same relative
positions in consecutive phrases. A sentence

structure consisting of two phrases per sentence
also exists and may be used for 16-bit wide I/O
transfers. The detailed procedure is given in
reference [6].

VI. PERFORMANCE IN APPLICATION AREAS

This section discusses potential applica-
tions of a VASTOR processor. The primary appli-
cation of VASTOR is as an auxiliary processor in
a minicomputer system. In this case, it would
serve to enhance the performance of the system
in vector and associative operations. A second,
and equally important, potential application
derives from the fact that VASTOR can be re-
garded as a collection of 1-bit wide controllers
driven in parallel by a host computer. Each of
these two application areas is discussed briefly
below.

Table 1.

Performance Comparison

Between VASTOR and a PDP=11/45
with Bipolar Memory in Vector Operations Involving
256-Element Vectors, with 16 Bits per Element.

Operation Result VASTOR PDP-11/45
Execution Time ‘Execution Time
Microseconds Microseconds
Compare Vector 4 us/bit ¥ 16 bits 3.225 us/word ¥ 256 words
= 64 = 825.6
Addition Vector 10 us/bit ¥ 16 bits 1.9 us/word * 256 words
= 160 = 486.4
Mark Vector 3 us/bit * 16 bits 2.5 us/word * 256 words
Largest = U8 = 6U0
Element
Compare Vector 3 us/bit ¥ 16 bits 2.5 us/word * 256 words
to Scalar = U8 = 6U0
Sum Scalar 336 us/bit ¥ 16 bits 1.5 us/word ¥ 256 words
Reduction = 5376 = 384

Vector and associative operations are per-
formed quite frequently in the operating system
software of a computer. Symbol table manipula-
tion and file management are two such examples.
Also, some computer languages, such as APL and
SNOBOL, are based upon the organization and ma-
nipulation of data in the form of vectors [4] or
character strings [7]. A VASTOR processor is
ideally suited to such tasks, and hence can take
a considerable load off its host computer. Ta-
ble 1 gives an estimate of VASTOR ‘s performance
in this area. The table gives execution times

41

for a number of operations_on 256-element vec-
tors, where each element is 16 bits wide. These
times are based on the current implementation
using a processing element, the ICU, which runs
at a 1 microsecond cycle time. For comparison,
the times required to perform the same opera-
tions in a PDP-11/45 minicomputer are given. As
can be seen from the data in Table 1, VASTOR is
an order of magnitude faster than a PDP-11/U45
when executing tasks that involve parallel oper-
ations on all elements of a vector. However,
operations such as sum reduction (adding all

elements of a vector) take much more time. In
this case, VASTOR’s performance is limited by
its inter-word communication facilities. How-
ever, when dealing with much longer vectors VA-
STOK “s performance on sum reduction approaches
its performance on vector addition. This is due
to the fact that many elements of the vector
would be stored in the same word of the array.

At the present stage of development of the
VASTOR processor, it is very difficult to obtain
an accurate estimate of the gain in performance
that would result from adding a VASTOR processor
to a minicomputer system. While the data in Ta-
ble 1 indicate that considerable gain can be re-
alized, this gain will be partially offset by
the overhead resulting from transferring data
between VASTOR and its host computer. This ov-
erhead is expected to be of the same order as
that involved in transferring data between the
main memory of a computer and a disk file.
Therefore, VASTOR is most suited for use in ap-
plications where a number of vector coperations
have to be performed before a given vector is
transferred back tc the host machine.

Stand-alone ICU’s have applications in pro-
cess control and monitoring. VASTOR may be used
in situations where a number of ICU’s performing
similar tasks are to be interfaced to a common
host computer. In this case, VASTOR represents
an organized way of performing I/0 and control
functions. Each ICU is capable of sampling data
from and controlling an external device at data
rates of the order of a few kilohertz. Status
information and data such as minimum values,
maximum values, averages, setpoints and enabling
bits for each device may be kept in the corres-
ponding working storage. The main limitation to
this approach is that it is necessary to syn-
chronize data transfer between the ICU’s and the
various devices.

VII. CONCLUSIONS

The VASTOR processor presented in this pa-
per represents a trade-off between the capabili-

ties and cost of the inter-word communication
facilities in an associative processor. The re-
sult of this trade-off is a processor that al-

lows a nontrivial associative processing capa-
bility to be incorporated in small scale mini-
computer systems. The communication hardware

provided in the VASTOR array enables data trans-
fer among the words in the array without requir-
ing costly and complicated hardware. It also
results in simple backplane interconnections
between different modules. The modular strue-
ture of VASTOR allows its capabilities to be ex-
panded easily and economically.

Some of the limitations of the current im-
plementation of VASTOR are due to the slow speed
of the processing element used (the ICU). A
faster and more powerful 1-bit wide processing
element can lead to a considerable increase in
performance without the need for any changes to
the architecture. In fact, because of the low

42

number of interconnections involved, the struc-
ture is well suited to integration. Some of the
possibilities would be the implememtation of an
array of 1-bit processors, or processors and me-
mory on a single chip. Another possibility
which is currently being investigated by the au-
thors is the use of a table driven processinaz
element made of memory only. Some other limita-
tions of VASTOR, such as the difficulty of re-
ordering a vector, are more fundamental. In
order to perform such operations at high speed,
a more complex, and hence more costly, inter-
word communication scheme must be provided.

REFERENCES

1. Anderson, G.A., and Kain, R.Y., "A Content-
Addressed Memory Designed for Data Ease
Applications", Proec. 1976 International
Conf. on Parallel Processing, IEEE, New
York, 1976, pp. 191=195.

2. Baudet, G. and Stevenson, D., "Optimal
Sorting Algorithms for Parallel
Computers", 1EEE Trans. Comput., vol.
c-27, pp. 84-87, Jan. 1978

3. Foster, C.C., Content Addressable Parallel
Processors Van Nostrand Reinhold Co.,
New York, NY, 1976.

4., Grey, L.D. A Course in APL\360 with
Applications, Addison-Wesley Publishing
Co., Reading, Mass., 1973

5. Kaplan, A., "A Search Memory Subsystem for
a General-Purpose Computer", Proc. AFIPS
1963 Fall Jt. Comp. Conf., Vol. 2U,
Spartan Books, Inc., Baltimore, Md.,
1963, pp 193-200.

6. Loucks, W.M. and Snelgrove, W.M., "VASTOR
1978", Univ. Toronto Computer
Engineering Report 13, June 1978.

Te Mukhophadhyay A., "Hardware Algorithms for
Nonnumerie Computation", Proc. 5th Ann.
Symp. Comp. Arch., April 1978, Palc Alto
CA., pp. 8-16.

8. Parhami, B., "Associative Memories and
Processors: An Overview and Selected
Bibliography", Proc. IEEE, Vol. 61, pp.
722-730, June 1973.

9. Shooman, W., "Parallel Computing with
Vertical Data", Proc. 1960 Eastern Jt.
Comp. Conf., Eastern Jt.:c Computer
Conf. 1960, pp 111=115.

10. Yau, S.S. and Fung, H.S. "Associative
Processor Architecture - A Survey", ACM
Computing Surveys, Vol 9, No. 1, pp.
3-27, March 1977.

!

~

WORD 0 ///

w w E §]
“a 8 £ 5 :'%
4 o 2] a <’
8 4 Z & CONTROLLER &
< o (@] E E
HOST COMPUTER 0 " |
I R R i ity =
| e 1 [‘
HIGH LEVEL | L DATA
COMMANDS B : Co .
\ 1 [M | 8
| [- T | b
| { L |
I | CONTROLLER | - SRR ;
: : e
| CONTROL | ! |
SIGNALS] | ‘
J | E
| | T 11 |
STORAGE AND i i C |
l PROCESSING | l M 7 | -
|
l S | A-J-J———-——lr__ | PHRASE
| I A O fomioen '—}-‘_‘————L___/ 0
| VASTOR ‘ i i o s P —
L ________ N 0 - I+J I
: CO | ~}
| M !
Fig. 1, The VASTOR processor ; < :
= A A
1 L !I
! C s
Y 7 |
| & | | PHRASE 31
M - MEMORY . I
Fig. 2. Control and data paths U
Ci-CELLi SERIAL OUT
=
fs]
[. gg
STORAGE | B | 2z
VARIABLE e E2
ELEMENT P I &8
LENGTH L & 5 =R
I g |
| |
| i |

fa——s f]/O

WORD N-1 / / / ’,'|

\—-.—V—/ 1
N-ELEMENT i—f—- / Fig. 3. Organization of

VECTOR the VASTOR ARRAY
(N=258) 1-BIT
PROCESSING
ELEMENT

(rcu)

43 -

Fig. 4. One word of the storage
and processing array

consT*

SERIAL IN

SHIFT

REGISTER
SH

BK
BACKING
STORE CCD

WK

WORKING PE
STORE RAM

i

WRITE ENABLE }
RR

ADDRESS LINES

-

DATA

RA.

+ COMMON TO ALL ARRAY WORDS

FROM PREVIOUS

PHRASE
= CIRC B l
Plgny | [SHMOD
' | MUX MUX
r v _Sh
WORD 0 s
s 1 1
s : l
1 - L =
1 [e] ! o
WORD i i & SH o— B
1 m \ -
| , i
! |
! I
: I FROM PREVIOUS
WORD 7 PHRASE
| A PORT l
TO NEXT ENABLE |77~ TcoNTROL
PHRASE SHIET
___ |REGISTER
sH conTROL” I
TO NEXT
COMMON TO ALL PHRASES. PHRASE

b

PE +
CONTROL

[P

SERIAL OUT

Fig. 5. The phrase structure

WK ADDRESS

TEMP CA/RRY MA!SK MSBy | ° O(jN RjR
WORD NO.] » Bd L] __WORD 1
dild e W L~ L1
-1
1 P / / !
A /’/, -1 LA
d d - //// : //// L~
|
d d / / . / L~
*]
1 g B A
" L= s -1
-1 L1 //// //// ///’ 11 |
] 11 /’// :::: //// L1
4% A (‘) o~
l ! 1
o P : : I -1 A
s I |
Fig. 6a. Vector addition -1 4 0 o : 1
|
example o oy : ! 0 : I]
kb dwkdw kB dwl B dLE
WK Icu
(a)
CLEAR C 3 Clear carry vector - array operation (optional)
OEN + MASK ; Vector array operation
FOR 1i=0,W-1 ; Controller operation
ADDRESS (Ai) = LSBA + i ; Address calculation - controller operation
ADDRESS (Bi) = LSBB + i ; Address calculation - controller operation
ADDRESS (Ri) = LSBR +.1 ; Address calculation - controller operation
ADDRESS (C) = LSBC ; Address calculation - controller operation

Ri - Ai L Bi ¥ C

C+« A AB, V A AC v B AC
i i i i

; Vector array operation

5 Vector array operation

Fig. 6b. Implementation of vector addition

TEMP + MASK
FOR {=0, W-1
ADDRESS (A;) = MSB, - 1
RR + TEMP.A
IF (S = 1)
EXIT

ELSE IF (S # 0)
TEMP + RR

s v e

we

we we we we

Controller operation
Controller operation
Controller operation
Vector array operation

Vector array operation
Controller operation
Address calculation = Controller operation

Vector array operation

Fig. 6¢c. Search for the largest element

45

HOST COMPUTER

CONTROL COMMAND

MICROPROCESSOR UP

5-5
BIT/us

|
|
|
|
\
|
BUFFER
MEMORY |
. |
I
|
|
|

CONTROLLER

MICROCONTROLLER UC

Fig. 7. Controller hierarchy bebre o A]

MICROINSTRUCTION| 50 BIT/ s

VASTOR ARRAY

————»= ADDRESS

WORD NO. J‘an N BITS 1 BYTE

1

V771
> V7777777
; V7771
2z
Z V7774

Fig. 8. Alternative modes for

Z input/output transfers

(a) (b) (c)

“VZ/77T— AREA LOADED WITH 1 TRANSFER

46

